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ABSTRACT

; Signal cancellation is an effect which occurs in conventional adaptive arrays.
This effect manifests itself as a loss of information in the desired signal. ~# this
report. we will' present two new adaptive array techniques to combat signal can-
cellation. These two ’new techniques are known as the frequency-hop spread
spectrum approach and the parallel spatial processing approach.

The frequency-hop spread spectrum technique makes use of frequency-
diserimination to  combat  jammer interference.  Using the desired  signal's
frequency-hop nature, we can remove the signal from the adaptation process in a
manner that climinates signal cancellation. When the spread-spectrum technigue
and the spatial-discrimination inherent in adaptive arrays are combined, a system
results with an interference rejection capability greater than either of the two

Sy
alone. Several effective schemes and silllljlzlti()llgf\&ﬂl% presented.

The second technique makes use of spatial smoothing and parallel structure
to eliminate signal cancellation. We will.show that this new scheme results in a
maximum-likelihood estimate of the desired signal in a spatial averaging sense.
Simulation results are presented to illustrate the effectiveness of this proposed

technique for combating signal cancellation.
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I. INTRODUCTION

Adaptive arrays have been the subject of extensive investigation for the past
two decades. They can reduce the receiver’s vulnerability to interference when
used in radar, sonar, seismic, and communication systems. The principal
motivation for this widespread interest in adaptive arrays is their ability to sense
and to automatically suppress the interference while simultaneously enhancing
desired signal reception without prior knowledge of the signal/interference
environment. Perhaps the easiest way to visualize the operation of an adaptive
array is to consider the response in terms of the array beam sensitivity pattern.
Interference suppression is obtained by appropriately steering a beam pattern null
and reducing sidelobe levels in the directions of interference sources, while desired
signal reception is maintained by preserving proper mainlobe features. An
adaptive array system therefore relies heavily on spatial characteristics to
improve the output signal-to-noise ratio (SNR). Since it is possible to form very
deep nulls over a certain frequency band, very strong interference suppression can
be achieved. This exceptional interference suppression capability is a principal

advantage of adaptive arrays over other techniques.

In the early 1960s the key capability of adaptive interference nulling was
recognized and developed by Howells [1.1-1.2]. Subsequently, Applebaum [1.3]
established the control law associated with the Howells adaptive nulling scheme
by analyzing an algorithm that maximizes a generalized SNR. Concurrently,

Widrow et.al. [1.1] applivd the technique of self-training or self-optimizing
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control to adaptive arrays. This self-optimizing control work established the
least mean square error (LMS) algorithm that is based on the method of steepest
descent. The Applebaum and the Widrow algorithm are very similar, and both
converge toward the optimum Wiener solution. Developments in seismic and
acoustic array work commenced at about the same time, so papers describing
applications of seismic arrays and hydrophone arrays appeared during the late
1960s. Capon et.al. [1.5] and Lacoss [1.6] addressed adaptive signal processing in
seismic arrays. while Shor [1.7] worked with hydrophone arrays.

The original Howells-Applebaum sidelobe-canceller exploited the differing
signal-to-jammer ratios in a directive primary antenna and an omni-directional
auxiliary antenna to avoid seriously attenuating desired radar signals. Widrow
introduced a pilot signal to control beamformer response in specified look
directions.  Griffiths [1.8] devised a different soft-constraint technique that
involved statistical characterization of the desired signals. Frost [1.9-1.10]
developed a constrained least-mean-square (LMS) algorithm that assured exact
conformance with some prespecified look-direction response. More recently,
Grifliths and Jim [1.11-1.12] contributed a structure called the ‘“generalized
sidelobe canceller,” which provided an alternative method of realizing hard
constraints. In the past few years Zahm and Gabriel [1.13-1.16] developed a
generalization of the soft-constraint method. Chestek [1.17] brought together
much of the earlier work on soft-constraint methods by combining soft linear

constraints with a mean-square-error criterion.

Although a number of various processing techniques for adaptive arrayvs have
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.c been described, these techniques can be simply categorized as implementing ,':

h
: either hard or soft constraints. The Frost beamformer is an example of a hard-

constraint adaptive array, whereas the adaptive sidelobe canceller is a soft-

. . )
E constraint adaptive array. ,
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1.1 Background '

.

A

Many adaptive array issues arise in applications of direction finding and

L adaptive beamforming. The preservation of desired signal from the adaptive {

arrays is one of the issues of great concern. Research over the last few years

have been mainly directed toward achieving satisfactory SNR performance and

vielding highly refined adaptive systems that can overcome most forms of clutter '
and jamming.

In any adaptive array applications, assumptions are always made for the

desired signal and the interference. For example, the strength of the desired

P

e

signal is small compared to the interference, or the signal is statistically

-y

uncorrelated with the interference. In fact, most algorithms will pof work if the

-

E
desired signal is correlated with interference. This limitation is a severe obstacle S
Ty
for adaptive arrays in many applications where multi-path propagations or smart 1
)
e : . . . . . 7
! jamming problems exist. Frost pointed out in his paper [1.10] that a linearly ]
-
i constrained adaptive array may cancel out portions of the desired signal with -
o jammers present in spite of the constraints. This cancellation of signal occurs '
{ ~ when the jammers are correlated with the desired signal. N
]
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Recently. Widrow et.al. [1.181.19] have found that a sinusoidal jammer
sitting in the frequency band of the desired signal can easily destroy the
“quality”” of the output response in any form of adaptive array. Since then,
Widrow et.al. have explored and studied the so called “'signal cancellation effect”™
in adaptive arravs. and proposed Duvall's beamformer and the spatial dither
algorithm to combat the signal cancellation phenomena. More recently, Shan
1200 suggested a spatial smoothing algorithm for adaptive beamforming to
hreakup the coherent signal cancellations.

The purpose of this report is to study two new approaches for avoiding
signal cancellation in adaptive arrays. The first approach is based on frequency-
hop spread spectrum systems. The second one is based on spatial processing with

paraliet structures,

1.2 Outline of Chapters

Chapter 11 illusteates signal cancellation and provides insight from various
perspeetives of adaptive arrays. With that background, we then propose two
different approaches to eliminate signal cancellation. They are the frequeney-hop
spread spectrim approach and the parallel spatial processing approach. Chapter
HE and IV focus on the frequencey-hop spread spectram approach. Chapter \
conerntrates on the parallel spatial processing approach.

Chapter T first gives a briel introduction to frequency-hop spread specetrum
ss~stems and provides the necessary background about the whole sy<tem that

mearparating with I'I""|ll"lll'_\-|lu|) :|t|:l|)li\'(' ArFrayvs, Several different schemes are
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then developed for frequency-hop adaptive arrays. Simulation results are
presented to verify the effectiveness of these algorithms in preventing signal

cancellation.

It will be seen in Chapter III that frequency-hop notch filters are always
required in frequency-hop adaptive arrays. Chapter IV then studies several types
of frequency-hop notch filters. Transient performance and convergence are
investigated. Comparisons of bandwidth and {requency response fe- lilters
are made to provide general insight into their use in f{requen..-nop adaptive

arrays.

Chapter V gives an introductory background and reviews previous work in
the field of spatial processing. Then, a spatial processing algorithm with parallel
array structures is developed. This algorithm results in a maximum likelihood
estimate of desired signal in a spatial averaging sense. Analysis and simulation

results that show the performance of the algorithm are provided.
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II. SIGNAL CANCELLATION IN ADAPTIVE ARRAYS

This chapter first illustrates the problem of signal cancellation in adaptive
arrays, then provides insight into the nature of this effect, and finally discusses
general approaches for eliminating signal cancellation. We will focus on the case

of narrow-band signals.

The chapter consists of four sections: Section 2.1 demonstrates signal
cancellation in adaptive arravs. Section 2.2 examines how this effect oeceurs in
the Frost beamformer. sometimes called a hard-constraint adaptive arrav. In
Section 2.3, the same effect is investigated for the adaptive sidelobe canceller,
which is a soft-constraint adaptive array. Based on the insight gained in last two
sections, Section 2.4 discusses and proposes cures for preventing signal

cancellation in adaptive arrayvs.

2.1 Introduction

Conventional adaptive arrays are known to be very effective in suppressing
directional jammers. This can be achieved by forming spatial nulls in the
directions of these jammers, provided that the desired signal and jammers are
uncorrelated.  The nulls are created by weighting the received jammer
components in a manner that the jammers but not desired signal are cancellid at
the array output  This optimal weighting is frequently referred to as the Weiner
solution. Improper weighting may. however, eause partial or total cancellation of

the destred stznal eomponents at the areay output. This phenomenon as ol

e B ade s el

Sy
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_‘ signal cancellation, and it may seriously degrade the performance of adaptive
arrays. Several researchers [1.10, 2.1] have observed and reported such signal
r cancellation effects in adaptive array systems.

_h Recently, Widrow et.al. [1.18-1.19] have demonstrated signal cancellation in
E\ the Frost beamformer. The Frost beamformer uses a constrained LMS algorithm
[‘ to minimize its output power. In this demonstration, a unit-gain constraint is
[ imposed in the look direction of the Frost beamformer. Suppose that a desired
L broadband signal is arriving {rom the look direction. This desired signal should
ig appear at the array output after going through a constrained unit gain. Now if a

sinusoidal jammer arrives off the look direction, this jamming sinusoid should be
rejected by the adaptive array. When both the jammer and the desired signal

are present, however, minimizing the total output power will cause the sinusoidal

jammer to be modulated so that it cancels some components of the desired signal
close to the jammer frequency (2.2]. Figure 2.1 shows the spectra of both a
desired broadband signal and the received array output. The jammer is a
sinusoid, and its spectrum is a line sitting at a normalized frequency of 0.25.

Notice that the signal components around the jammer's frequency in Figure 2.1

have been cancelled at the array output. If the jammers consist of a sum of

sinusoids at spaced frequencies within the passband of the desired signal. the

(]
output spectrum will be notched at each of the jammer frequencies as shown in
Figure 2.2 This effect results in a loss of information from the desired signal.
’ : » : _
¢ and conld be troublesome in anti-jamming or spread spectrum communications.
. It a fast adaptation rate is employed, the jammer modulation is more
(
.
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effective and complete desired signal cancellation can occur. In such situations,
signal cancellation can be induced even with a broadband jammer. Widrow
recognized that this signal cancellation can be related to the adaptive noise
cancelling problems [2.3]. In adaptive noise cancelling, an adaptive noise
canceller is able to create a null at the frequency of a sinusoidal reference signal.
By virtue of this nulling ability, the adaptive noise canceller performs as a linear,
time-invariant. notch filter. The step size u of the LMS adaptive algorithm
controls the width of the notch. The larger the step size, the wider the notch
[2.4]. This is similar to the problem of wide-band signal cancellation. Figure 2.3
compares the output spectra showing different cases of wide-band signal
cancellation for different values of g. Both spectra have same frequency null
centered at the jammer’s frequency, but the larger the value of g, the wider the
bandwidth of the cancellation notch. The step size p obviously plays a similar
role in both adaptive noise cancelling and signal cancellation. That is, the faster
the adaptation rate, the wider the cancellation width, since faster adaptation

allows for higher frequency modulation of the jammer.

If the desired signal is a narrow-band signal sitting at the same frequency as
the jammer, the output of the adaptive array may fall to zero, as shown in
Figure 2.4. The convergent beam pattern could thus form a null in a false
direction as shown in Figure 2.5. In this situation, the adaptive array completely
fails to perform as a receiving array.

As another example, it has been found in [2.2] that signal cancellation can

occur even if the jammer und desired signal are sinusoids with slightly different
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A converged array beam pattern
when signal cancellation occurs

Figure 2.5.
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r frequencies. The adaptive weights are modulated during the adaptation process.

This weight performance is far from that of the Weiner solution. This signal

. cancellation due to the weight modulation is described by Widrow et.al. [1.18], j
E and is also referred to as the non-Weiner signal cancellation. i

Another form of signal cancellation takes place in adaptive arrays that have
“soft” omnidirectional or look-direction constraints. The Howells-Applebaum
sidelobe canceller is an example of such an array [2.1]. An adaptive array
algorithm which uses soft constraints may null the desired signal if its power is

much greater than the power of jammers. This is because nulling the high-power

AT Y

desired signal minimizes output power more than nulling the low-power jammers.

This effect 1s referred to as Weiner signal cancellation, since it is a property of r

the converged Weiner solution. Notice that non-Weiner signal cancellation )

=

R

occurs in any form of adaptive arravs, but Weiner signal cancellation occurs only p

<

in ‘‘soft-constraint’ adaptive arrays. + 3
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. 2.2 Signal Cancellation in Frost Adaptive Beamformers » .
! }
3 In this section, we investigate signal cancellation in the Frost adaptive f-‘
3

| beamformer. The Frost beamformer minimizes its total output power by ]
E : : o : ’
’ employing a constrained least-mean-square criterion. Since its structure can
X easily impose a linear constraint in the look direction, sometimes it is called a S
4"

hard-constraint adaptive array. A typical constraint is one that forces the )

MM N fid

‘wiﬁ. e _.i?‘vv

-

e

YT
it

[ o am sn g mng

beamformer to form a unit gain and zero phase over a certain frequency band in

the look direction.

The most important point regarding signal cancellation is the quality of the
adaptive array output. To demonstrate how this effect can occur, consider a
simple two-element Frost beamformer as shown in Fig. 2.6. Suppose a sinusoidal
desired signal is arriving from the look direction, and a jammer at the same
frequency as the desired signal and with a fixed phase shift is arriving from the

off-look direction. Let the desired signal S and the jammer J be the following,

S = Ael*t ]
4
J = Belvttis (2.1) ]
P
where A and B are the corresponding amplitude of the signal and the jammer. o X
is 2 constant phase difference between S and J, and w is the angular frequency. ;
.
In the sinusoidal case, sometimes a phasor diagram may be useful in explanation, T
-
R
and we will use it to explain the false beamforming later. e
o
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Figure 2.6. A simple two-element Frost adaptive beamformer. |
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In Figure 2.6, the receiving element #1 receives both the desired signal and

jammer as

X, = Ael®t 4 Belut+is (

[§]
(1

and the element #2 receives the same signal plus the delayed jammer as

Xo = Ael¥t 4 Belwttie-jud (2.3)
where
dsinf
A =
¢

d = the inter-element distance

¢ = the speed of propagation

§ = the jammer’s incident angle from broadside

Denote the weight vector and the received signal vector as

W= [ W, W7
X=X X]T . (2.4)

The beamformer output is thus given by

y = Wix = XTw
= WX, + W,X, . (2.5
The adaptive weights are complex, and the complex algorithm for linearly
constrained adaptive beamformers {2.5] is used. For a detailed analysis, please
refer to Appendix A. The constraint in the look direction is set to unity gain and
zero phase from zero frequency to half the sampling rate. Thus the Frost

algorithm can be expressed as the following,
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Min [y |?
24

subject to W, + W, = 1 , (2.6)
or is equivalently given by

Min | WX+ X |

subject to W, + W, = 1 . A (2.7)

Substitutine X,. N. and W, into (2.7) vields an unconstrained minimization
> 1 2 1 A

problem ax follows.

Min e ] | At Beo[ 1-Wat Woe A ] | (2.8)

Solving (2.R). one easily finds that the optimal weight 5 is

-j¢
W = 1 + —Ace . (2.9)

; 1-ed*s  B(l-e/"

Note that the optimal solution results in a zero output when the adaptive

processor reaches steady state. t.e.,
Ymin(0) = WX =0

Of course this is undesirable. Ideally the output should be the desired signal

only. with no added coherent jammer. By this criterion, the optimal solution

W, opt should be

1

’ —_— ————— .
W = TTTA3 . (2.10)

Comparinz (2.9) and (2.10). we may see that there are two ways to force the

welshts to the optimal solution in coherent jamming environment.  he first one

I S S _441
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is to set 4 zero, or to eliminate the desired signal in the adaptive processor. The
second one is to make 4 << B, which means the signal power should be much

smaller th n the jammer power.

In his master-slave beamformer, Duvall [2.2] applied the first idea to remove
desired signal from adaptation. Since no desired signal is involved due to inter-
element subtraction in Duvall's master beamformer, the influence over weight
settings will be dominated by the jammers. The adaptive weights therefore reach

an optimal solution which cancels the jammers only.

Now consider the case when 4 << B, which means a very strong jammer is
present, then W," = W, ,. Note that the output y equals to WTX. This
still results in a zero output, even though the weight is very close to the optimal
solution. This is better explained from the perspective of covariance space. Shan
[2.6) has shown that in a coherent signaling environment the sample covariance
matrix has a zero eigenvalue. Thus minimization with respect to the weights will
steer the weight vector to align with the eigenvector corresponding to this zero
eigenvalue. The output of the beamformer hence falls down to zero.

To understand the false nulling phenomenon of the beam pattern, it is
helpful to consider a phasor diagram as shown in Figure 2.7, In this phasor
diagram. OQ@ and OR are the jammer components received by the element #1
and #2. respectively. The angle LQOR represents the phase delay w A between
the jammer components at element #1 and #2. PO is the desired signal
received by borh olements. Anr ideal adaptive beamformer should form a null in

adirection sueh that the phase delay is w A,
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’
Figure 2.7. A phasor diagram explain the false nulling. ]
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Let the length represent the amplitude. For a far-field planewave jammer,
each element receives equal jammer amplitude, namely |OQ| = |OR|. The
received amplitude may vary from element to element for a near-field jammer.
Without loss of generality, suppose both the jammer and the desired signal have
equal power intensity. In other words, |[PO| = |0Q| = |OR|. For the
coherent jamming situation, both the jammer and the desired signal have the
same frequency w. The relative phase difference ¢ between signal and jammer is
a fixed constant. In the phasor diagram. this means OQ and OR are rotating
about point O with angular speed w, and PO is rotating about point P with the
same angular speed. The relative phase difference ¢ between signal and jammer
should not be confused with the phase delay wA between the jammer

components at elements #1 and #2.

One can easily see that PQ is the phasor superposition of PO and OQ,
whereas PR is the phasor superposition of PO and OR. In other words, | PQ |
actually represents X, as received at element #1, and | PR | represents X, as
received at element #2. Since the signal and the jammer have the same
frequency w, both PQ and PR are then rotating about point P with the same
angular speed w. Besides, the phase delay LQPR between PQ and PR has been
fixed. and it is easy to verify that LQPR = wA/2 by geometrical identities.
This means that the phase delay between antenna element #1 and antenna
element #2 is changed to another fixed value, which is wA/2 instead of wA.
Note that this is virtually equivalent to the following scenario: A near-field

jamimer, with no desired siznal arrives in a direction for which the inter-element
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phase delay is wA/2. For a near-field jammer, the array elements should receive
jammer components with significant attenuation. Since it “looks” like a near-
field jammer, the adaptive beamformer, subject to the minimization algorithm,
will always adapt to minimize the beamformer output power. Therefore, forming
a null in a wrong direction with phase delay wA/2, rather than wA, will still
achieve the power minimization. This accounts for the false nulling of the
adaptive array. Again, note that the desired signal has been cancelled, and hence

can not be recovered at the array output.

Simulations with the Frost beamformer in Fig. 2.6 were conducted to verify
the above argument. The inter-element distance was half a wavelength. A
coherent jammer as well as a desired signal are received by the adaptive
beamformer. Both have equal power intensity 1. The desired signal is from
broadside and the jammer is in a direction 45 ° from broadside. The output of
the beamformer is shown in Figure 2.4. The resultant beam pattern in Figure 2.5
has a null in a direction 20.7 * from the broadside. By the above false nulling

argument, one could verify that

wsin 207 © = LB (2.11)

Hence, the adaptive array finds that forming a null at 20.7 ° from broadside can
minimize array output more than forming a null at 45 ° from broadside. This
false nulling is not easily seen when the signal power and the jammer power are
not of the same order of magnitude, especially when the jammer power is much
stronger than the signal power. In such a situation, | /70] is very small

compared to | OQ | «r | OR |, and the fixed phase delay 2O/ between V| and
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Xa will be very close to wA. The resultant null of the converged beam pattern
will be very close to the jammer's bearing. Even though the beam pattern looks
correct in this case, the beamformer output still falls to zero which leads to

difficulty in recovering the desired signal.
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2.3 Signal Cancellation in Adaptive Sidelobe Cancellers

In last section, we demonstrated that the desired signal was cancelled by the
jammers in the ‘“‘hard-constraint’ adaptive arrays. In this section, we will show
that the same cancellation can occur in a “‘soft-constraint’ adaptive array. The
adaptive sidelobe canceller is an example of the ‘“soft-constraint’ adaptive
arrays. To show how signal cancellation can occur, consider a simple two-
element adaptive sidelobe canceller as shown in Figure 2.8. Both receiving
elements are assumed omni-directional. The adaptive weight is complex and is
updated by the complex LMS algorithm [2.7]. Again the signal and the jammer
are coherent as in (2.1). The receiving elements #1 and #2 receive X and .\’ as

in {2.2) and (2.3), respectively. The array output y is given by
Yy = _\—] - ”:\-2
Mathematically, the adaptive algorithm can be expressed as follows,

M :
lin ly |

This appears as an unconstrained minimization problem, and the minimum

solution for the complex weight is

W o— A 4+ Bei®
T A4 B
. _L-jwd
— e'IWA+ All-e ) (312)

A + Belé-iud

Again, this minimal solution results in a zero array output, when the adaptive
processor reaches steady state. The desired signal is totally cancelled out by the

jammer. and the adaprive array fails to perform as areceiving array.
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Usually, the adaptive sidelobe canceller is very effective when jamming
power is much higher than signal power. The optimal solution should be able to

suppress the jammer only and is given by
W = e8| (2.13)

Comparing (2.12) and (2.13), it shows that the weight can be the optimal solution
if A is zero. This implies that the removal of desired signal from adaptation

process is a key point to combat signal cancellation in adaptive arrays.
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2.4 Cures for Signal Cancellation

In this section we first discuss the nature of signal cancellation, and then

propose several cures to eliminate such a negative effect in adaptive arrays.

From Section 2.2 and 2.3, one can easily see that signal cancellation arises
because of the following: First, the power minimization algorithm is used.
Second, non-zero correlation between signal and jammer exists. Unfortunately.
these scenarios happen all the time. Any adaptive array using the mean square
error (MSE) minimization criteria exhibits such *‘signal cancellation™ phenomena.
Furthermore, Duvall showed in his thesis that signal cancellation can occur even
when the jammer is uncorrelated with the desired signal, and the weights are also
modulated during the adaptation process. More details about the weight-

modulation effect in the hard-constraint adaptive array are described in Duvall

As we have seen, there are several symptoms present if signal cancellation
occurs during the adaptation process. First of all, the adaptive weights are
modulated. Secondly, the output spectrum is distorted. Thirdly, the beam
pattern may show false nulling. The key point concerns the interaction of the
jammer with the signal during the adaptation process. Any properly designed
preprocess that can separate the desired signal from the jammer in some manner
will essentially eliminate signal cancellation. By such a preprocess, the adaptive
array would be able to null the jammer only, and to recover the desired signal as
well. The preprocess has to utilize the a priori information either from the signal

or from the jammer.
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If the direction of the desired signal is known, Duvall has developed a
master-slave beamformer to combat signal cancellation in his thesis [2.2]. The
idea of Duvall's bez;mformer iIs to preprocess the desired signal prior to the
adaptive process. In his method, inter-element subtraction is employed to
remove the desired signal before the adaptive processor. By taking the signal out
of the adaptation process. the signal/jammer interaction in the adaptive process
is essentiallv eliminated. Notice that the inter-element subtraction can be
applied only when identical antenna elements are used.

Another idea is to preprocess the jammers so as to break up the
signal/jammer correlation. To do so, spatial discrimination can be applied to
such preprocessing. Widrow has sugzested a spatial dither method. which is also
called the '*3/4in-plywood” method. to break up the signal/jammer correlation

(1.18].

So far, all the methods proposed by Widrow and Duvall are suggested for
the hard-constraint adaptive arrays. In such an adaptive array, the signal's
direction is assumed known. Since signal cancellation also exists in soft-
constraint adaptive arrays, more powerful methods to eliminate this effect should
be devised. The remainder of this section suggests other approaches to climinate

signal cancellation in adaptive arrays. Two approaches are proposed.

The first approach is based on frequency-hop spread spectrum techniques.
Chapter III and Chapter IV investigate and discuss the effectiveness of such an
approach. In this approach. the desired signal is assumed to be frequeney-

hopping. The only information about the desired siognal known to the adaptive
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arrays is the pseudo-random (PN) code. The term ‘‘pseudo-random’ is used
specifically to mean random in appearance but reproducible by deterministic
means. This approach is very suitable for soft-constraint adaptive arrays, or for

applications where the signal’s direction is unknown.

Another approach is based on parallel spatial processing techniques. This
approach is investigated in Chapter V. In this part, we assume the direction of
the desired signal is kncwn. The idea is to apply spatial smoothing in a direction
orthogonal to the look direction. so that any off-look jammer will be spatially

smoothed out.
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.( III. FREQUENCY-HOP ADAPTIVE ARRAYS y

In Chapter II we demonstrated the phenomenon of signal cancellation, which

exists in most adaptive arrays. We briefly mentioned two new cures for signal

B -J
- -
S . . . . o
e cancellation: one is the frequency-hop approach; the other is the spatial o
I . . . . b &

smoothing approach. Chapter III will investigate the first approach. )
-
The chapter is organized in seven sections: Section 3.1 gives a brief 1

introduction to frequency-hop spread-spectrum techniques and their integration

)

with adaptive arrays. In Section 3.2, we describe an overall system structure for -

frequency-hop adaptive arrays. From Section 3.3 to Section 3.6. we present four

P S S

different adaptive array schemes to combat signal cancellation, when the desired

=
signal is known to be a frequency-hop spread-spectrum signal. In Section 3.3, the ' 1
7
.Y
first scheme is called frequency-hop adaptation algorithm, which can be used in =
E
adaptive sidelobe cancellers. In Section 3.4, we discuss the filtered-X filtered-¢ ' ]
B
algorithm, which is also used in adaptive sidelobe cancellers. In Section 3.5, we ]
discuss the master-slave adaptive sidelobe canceller. Section 3.6 presents a 1
)
master-slave Frost adaptive beamformer when the signal’s direction is known. )
NE
Finally. Section 3.7 describes coherent detection. and compares the results of ]
i R
e these new schemes with the results of existing techniques. ] 4
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3.1 Introduction

Spread-spectrum techniques are often used to neutralize large number of
interferences and jammers from interfering with signal transmission. This
spread-spectrum processing (3.1-3.3} encodes the signals in 2 manner which makes
them resistant to unauthorized detection, demodulation, and interference. It is
also well known that adaptive arrays are able to suppress directional jammers by
forming spatial nulls in the direction of jammers. Adaptive arrays utilize
'spatial-domain information to discriminate between the desired signal and
jammers. Spread-spectrum techniques utilize frequency-domain information to
discriminate between the desired signal and jammers. In many anti-jamming
applications. a combination of spread-spectrum processing and adaptive array
processing, rather than either separately, constitutes the most robust and
effective anti-jamming protection. In such situations, if spread-spectrum

techniques effectively interface with adaptive array systems, they represent a

noteworthy advantage.

Integration of spread-spectrum techniques with adaptive arrays has been
reported by Compton [3.4], and Winter [3.5]. Digital communications are always
employved in such a system. Compton applied the direct sequence spread-
spectrum methods to Widrow's LMS adaptive arrays. The same experiments
using direct sequence techniques are described by Winter, except that four phases

are used to increase the data transmissicon rate.

301 Frequeney-Hop Spread-Spectrum Techniques
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One of the common spread-spectrum techniques utilizes frequency hopping.
With the frequency-hop spread spectrum technique, the desired signal can be
binary-phase-shift keyed (BPSIL) or quadrature-phase-shift keyed (QPSK). The
center frequency of the desired signal is hopping corresponding to a previously
arranged pseudo-random (PN) code. For an authorized receiver, the signal can be
easily recovered by tuning in accord with the known pseudo-random frequency
schedule. To unauthorized receivers. the emanating signals looks like white
noise. Only one [requency is used at a time. The resultant signal spectrum is
spread over a large bandwidth. a bandwidth that is typically ten to several
hundred times larger than the signal information bandwidth [3.6-3.7).

The fact that frequency hopping does not provide instantaneous coverage of
the broad signal band leads to the consideration of the rate at which the hops
occur. Clearly. the faster the hopping, the more nearly the frequency-hop
approximates true spectrum spreading. Two basic characterizations of frequency
hopping are fast frequency hop and slow frequency hop. These are distinguished
from one another by the amount of time spent at each discrete frequency before
hopping to the next. Sometimes the number of bits per hop is used to
distinguish slow frequency hop from fast frequency hop. The two tyvpes of
frequency hopping are briefly discussed below,

When slow frequency hop is employed, the carrier frequency remains
constant for aune periods far in excess of the time span of the data bits. This
asuafly allws many data bits to be transmitted at each frequency. and the

reswcing transnatter and reeever equipment is simpler and less expensive than
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that for a faster frequency hop. The disadvantage of slow frequency hop is that
an enemy can implement smart jammers that defeat the anti-jamming protection
in many instances. This can be accomplished by providing the jammer with a
search receiver that scans the signal frequency band and locates the transmission;
then the jammer's power can be concentrated at the frequency where the signal is
being transmitted. If the jammer can adapt quickly enough, it may be able to
follow the slow frequency hop.

For fast frequency hop. as the name implies. it involves very rapid returning
of the signal and very short dwell time at each frequency. Generallv. a fast hop
is applied to defeat the smart jammer's attempt to measure signal frequency and
tune the interference to the portion of the band. To defeat this tactic, the signal
must be hopped to a new frequency before the jammer can complete its
measurement and effect interference. Smart jammers, therefore, are forced to

jam only a fraction of the total hopped band, since they only need to interfere

with enough of the hops to decrease the SNR.

It is well known that signal cancellation effects exist in most of the
conventional forms of adaptive array. This effect occurs when a jammer is sitting
inside the signal's frequency vand. This motivates us to use the frequency-hop
spread-spectrum  technique as an approach to the elimination of sigual
cancellation in adaptive arrays. In addition, combining the spatial-diserimination
capability of adaptive arrays with frequency-hop techniques yiclds a system
whose interference rejection capability is far greater than that of either of the

two techniques nsed alone.
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3.2 Overall System Structure

In this section we describe an overall system structure for frequency-hop

adaptive arrays to provide a background of the whole system concept.

Figure 3.1 shows the overall system diagram. This system consists of an
array of antenna elements. an adaptive array processor, a set of local oscillators,
and a match filter. The match filter system consists of an “integrate and dump™
and a decision maker. or a threshold detector. The antenna elements are omni-
directional. The adaptive array processor is used to suppress the jammer and to
receive the desired signal as well. Following the processor output. there is a set
of local oscillators which mixes and decodes the signal from the array output.
After mixing and decoding. the match filter is used to recover the signal's

Information.

Several assumptions are made for the {requency-hop adaptive array system.
First of all, the desired signal is assumed to be a frequency-hopping signal.
Second, digital data transmission is emploved. Third, fast frequency hop is used.
By this fast frequency hop, several frequency hops are possible during the time

span of one data bit. The signal’s direction may or may not be known.

The system can be used in many anti-jamming applications when the desired
sicnal is known as a frequency-hop spread-spectrum signal. This will not work
when signal cancellation occurs in adaptive arrayv processors. New schemes for

adaptive arravs are presented o the following sections
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3.3 Frequency-Hop Adaptation Algorithm

In this section, we propose a new adaptive array technique to prevent signal
cancellation in frequency-hopped communication systems. This technique,
termed the ““frequency-hop adaptation algorithm,” is applicable to both soft and
hard-constraint adaptive arrays. The new algorithm utilizes a special filter

structure which is called the frequency domain, complex, LMS adaptive filter.

3.3.1 Frequency Domain LMS Adaptive Filters

A conventional LNS adaptive filter i1s shown in Figure 3.2, The input goes
through the tapped-delay line (TDL). and then is multiplied by the adjustable
weights and summed to form the output. The weights adapt to match the
desired response in a least-mean-square sense. Basically, this is a time-varying
finite-impulse-response (FIR) filter. The frequency response of the filter depends
on those weights of the tapped-delay line. Each weight has effectiveness over the
entire frequency band. This filter structure, however, is not the most appropriate

when only certain portion of the frequency response need to adapt.

Various structures and algorithms have been proposed for frequency-domain
adaptive filters [3.8-3.11]. Among these filters, a structure suggested by Naravan
(3.11] is very compatible with f{requency-hop spread spectrum techniques.
Horowitz and Senne [3.12] have applied frequency-domain filtering to adaptive
Array processing.

)

Fiznre 3.3 <hows the diagram of Naravan's freauencev-domain adaptive lilter,
T , ; ! A l

The wdaptive weights are complevs and are updated by the complex LS
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algorithm [2.7]. The input feeds through the tapped-delay line and undergoes the
discrete Fourier transformation (DFT). The complex output bins of the DFT are

weighted by adaptive weights and summed to give the filter output.

Comparing Figure 3.3 with Figure 3.2, it is very clear that the only
difference between frequency-domain and conventional adaptive filters is the
discrete Fourier transform in between the tapped-delay line and the adaptive
weights. It is well known that the DFT can be interpreted as a bank of
uniformly spaced band-pass filters. This implies that the weights in the
frequency-domain LMS adaptive filter are adapting at the output of a bank of
band-pass filters. Each individual weight now has the ability to control the gain

and phase of the frequency response within a narrow range of its assigned

frequency.

3.3.2 Frequency-Hop Adaptation Algorithm

With the background of frequency-domain adaptive filtering, we present an
adaptive array scheme as shown in Figure 3.4, The antenna elements are omni-
directional. Following the antenna elements is a frequency-domain adaptive
filter. The system is operating with frequency-hopped BPSK signals in the
presence of jammers. The desired signal is hopping from one {requency bin to
another. Notice that the adaptive array scheme in Figure 3.4 will perform as a
two-element Howells-Applebaum adaptive sidelobe canceller if the weights are
adapted by the conventional LMS algorithm. This is true even though a

frequency-domain LMS adaptive filter is used. Weiner and non-Wemer signal

.

. v A - . A P VU RN O SR oy D, W I R O S
. . . A a -
WSy el L L el e 7 S Sy W

AR A |

=




- —— Ty veyrr. vy A P b
—p———T 4-_1.. Nt it S0 i . A .- . ' t .,
: - -d P R o '

‘wyyt4obpe uoryejdepe doy-Aousnbauy
bursn Aeade aatjdepe doy-Aousnbauy y  p g dunbiy

Jyouy3
: 1ndLNo
' IAILdVaY
3
4
”
% o J L) L) 1) INIHDLINS
3 N SIHOIIN dOH-AIN3INDIYS
g J1gvLsncay
X

144

#
w.
¢ IR 24 NI
f -2o-t YNNILNY
”. )
3 Jndino f\.\wJ\ .
w ISNOJSIY 1# 1N3IW3I3
A aMISI0 YNNILNY
‘
y
3
_m . . S ® ® rrvl.» .
5 ¥ @ @ o =B . e . 0.

R ST




ey Y

— P——— g - - - - .
- )t PACasategui ol il SREL_ SN SR g D A Juint auu g Rl i it SR A T Sal BT RSl Rl Al M

- 41 -

cancellation still occur in such a Howells-Applebaum sidelobe canceller, and the

weights are modulated during the adaptation process.

With the structure of the frequency-domain LMS adaptive filter, we are able
to use a so called frequency hop adaptation algorithm. In this algorithm, the idea
of eliminating signal cancellation is to stop the weights from modulation. Now
the frequency-hop adaptation algorithm is given as follows: All frequency bins
except the one which contains the current signal are adapted. Meanwhile. it
“freezes” the weight which contains the current signal while adapting the rest of
weights to minimize the array output power. This contrasts with existing

techniques which adapt all complex weights corresponding to all the {requency

bins.

Mathematically, the weights of frequency-hop adaptation algorithm can be

described as
Wk+1) = W(k)+ 2ue(k)Ak)X(k) , (3.1)
where A (k) is a time-varying diagonal matrix and can be expressed as follows,
1 0
Ay = [0 1 o
-1
Note that all but one of the diagonal entries of A (k) are unity. The position of
the zero diagonal entry is hopping according to the signal’s PN frequency code.
In the algorithm, only the selected complex weight corresponding to the

current instantaneous frequency is temporarily f{rozen. and the rest of the

compley werzhts are adapted ina conventional way to minimize the noise. to nuli
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;‘ jammers in the sense of mean square error. Since the desired signal always

appears through a frozen (not adapting at that moment) weight, the weight

modulation effect will never act on the signal. Consequently, degrees of {reedom

[I in the weights are never used to cancel the desired signals. Thus signal
cancellation can be prevented. And since the adaptive process adapts all f‘?j
frequency bins except one at a time, inhibiting adaptation at the current ‘

frequency bin will not significantly slow the rate of convergence. 1

[t remains to demonstrate the effectiveness in suppressing the jammer. This

1
is easily understood from the point of view that the desired signal is transparent 1
to the frequency-hop adaptation algorithm. No matter whether the desired signal ]
is present or not, all the weights on the average will still adapt to minimize the :

[
output power. In the situation when the jammer Is present only. it works just as
a conventional adaptive sidelobe canceller. N jtq
9
We leave the simulations to Section 3.5 and 3.6, since many of them are .
similar in terms of sensitivity in beam pattern and frequency response. y
M
'
3.3.3 Discussion and Conclusions f
The frequency-hop technique is very compatible with Narayen's frequency
b -
7 domain LMS algorithm when adapted in accord with “frequency-hop adaptation ’.

I algorithm™ as given in (3.1). DBasically, this algorithm is a filtered-\" LNIS
aleorithm. The algorithm makes use of the frequency-domain adjustability to
v freeze the adaptive weight which corresponds to the desired signal frequency bin.

]

. By freezing the selected weight, the modulation elect on the signal s stopped.
3
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and signal cancellation thus can be eliminated.

There are several points that should be taken into account. First of all, the
array output is directly used as the feed-back error in the adaptation process.
Minimizing the output power is the performance criterion. This however
introduces a performance limitation associated with signal power. When a high-
power signal is present, this signal will feed back to the adaptive processor, and
cause a high misadjustment which corresponds to neisy weights. This results in a
noisv recovered signal.

Second. the DFT always introduces inherent leakage effects, i.e., the energy
in the main band of the frequency response ‘‘leaks” into the sidebands, obscuring
and distorting other sidebands responses. Besides, the frequency-band resolution
of the DFT is limited by the length of the window. Normally, in frequency hop
environments. thousands of {requency bands are required. This implies that the
number of taps in the tapped delay line, and hence the number point of DI'T,
should be at least around a few thousand for a good frequency resolution. If so,
the DFT processor will be expensive and complicated. Also the transient
response due to the associated long tapped delay line will become very critical
when a high hopping rate for the signal is desired. Chapter IV will relate more

details about leakage effect. frequency resolution, and transient performance.
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3.4 Filtered-X Filtered-¢ LMS Algorithm

In this section, we present a second adaptive array technique, termed the
filtered-X filtered-e LMS algorithm, to combat signal cancellation in soft-
constraint adaptive arrays. This algorithm shows that signal power will have no
effect on the weight setting. The new algorithm shares common merits with the
so called ‘“instrumental variable” (IV) method in the field of recursive
identification (3.13]. In this scheme we also introduce a filter called the
frequency-hop notch filter. Ideally, this filter should have a flat frequency
response and a linear phase except that it can form notches at the specific

frequencies in accord with a2 known frequency code.

3.4.1 Structure and Algorithm

Figure 3.5 shows a modified Howells-Applebaum sidelobe canceller for use
with the “filtered-X, filtered-¢ LMS algorithm.” Again the antenna elements are
omni-directional, and will receive the signal as well as the jammer. The desired
signal is a frequency-hopping signal. Only one frequency is used at a time, and

the signal direction may or may not he known.

The key idea embodied in this modified sidelobe canceller is the removal of
the desired signal from the adaptation feedback (the error). Since the desired
siztial i hopping from bin to bin. a signal-free error can be formed by filtering
the array output through a frequency-hop notch filter. This signal-free error is

then vsed as a measure of the performance criterion. Due to the removal of

desiped signal from o adapration feedback. signal power should have little or no
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effect on the optimal solution of the weights. Direct application of the LMS
algorithm using this filtered error to update the weight vector may result in
instability {3.14]. To avoid such instability, the X vector is filtered in the same

manner as the error, and this provides the same phase delay needed by the LMS

algorithm.

As the usual way with a Howells-Applebaum sidelobe canceller, the jammer
and the signal components from element #2 will go through the tapped-delay
line as weil as the frequency-hop notch filter. The error is also obtained by
notch-filtering the array output. The weights of the tapped-delay line are
adapted by a modified LMS algorithm, which s referred as the “filtered-N,
filtered-¢ LNS algorithm ™ A conventional LMS algorithm generates a filter
output as the inner product of the current weight vector and the current signal
vector, and then updates the next adaptive weight vector by using the current
error and the current signal vector. For the *“filtered-X, filtered-¢ LM>
algorithm,” the adaptive filter output is the same inner product of the current
weight vector and the current signal vector, except that the next weight vector is

updated by the filtered error and the filtered signal vector.

Mathematically, the conventional LMS algorithm updates the weights vector

as follows,
Wik+ 1) = WY+ 290k} X(h)
The filtered- X', filtered-¢ LMS algonithm updates the weights vector according to

Wik=1) = W)+ 201k N (k)
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where Xl(l:) represents the filtered X vector and e'(k) represents the filtered

error. The output is the same inner product of the weight vector 1" and the

unfiltered X vector, te.,
y(k) = WT(k)X(k)

This modified algorithm was first presented by Widrow ef.al. [3.15-3.16], and is
somewhat similar to the “instrumental variable™ (IV) method [3.13]. The IV
method decorrelates an estimate of X vector and the svstem noise so as to
overcome the converzence problems in recursive identifications. The detailed
block diagram of the “filtered-NX. filtered-¢ LMS algorithm™ is shown in Figure

3.6.

We need to demonstrate that this modified algorithm will still be capable of
removing jammers from the array output. Assume that the spectrum of the
jammer is constant relative to the time-variation of the frequency-hop desired
signal. Suppose a given frequency bin of the “unfiltered” e.rror contains the
jammer plus an occasional burst of desired signal. The same given frequency bin
of the “filtered” error thus will contain jammer alone when the frequency-hop
notch filter is tuned elsewhere and will be zero during the time when the notch
filter is tuned to that bin. On the average. however, the jammer will be present
in that frequency bin and will make itself apparent to the adaptive process in
which the zoal s to reduce the power of the filtered error.

The frequency-hop notch filters are synchronously notching at the signal's
frequencys Sinee unbalaneed delay of filrering might result in instability in the

LA sdapnve alzorithm, the same tiltering s then required to balunee delay and
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to stablize the LMS algorithm. More details about the structure of frequency-

hop notch filters are left for Chapter IV.

Notice that the desired signal components are all notched out from the error
and the element #2 by the frequency-hop notch filters, and the jammers and
white input noise will control those adaptive weights of the tapped delay line.
This implies that signal power would have no effect on the adaptive weights.
The signal and jammer will not interact with each other during the adaptation
process. This prevents signal cancellation phenomena of both Wiener and non-
Wiener types in conventional Howells-Applebaum sidelobe cancellers. From the
aspect of the sensitivity pattern, the adaptive array should create nulls in the
directions of jammers. The beam pattern corresponding to the Wiener solution

would be the same. with and without the signal.

3.4.2 Discussion and Conclusions

In frequency-hop spread spectrum systems, normally high-Q and frequency-
tunable filters are used to reduce jamming effects outside the desired signal's
frequency band. This kind of filtering, however, would not reduce the jammer
power level inside the signal’s frequency band. Adaptive arrays can attenuate
directional jammers, but theyv can also cause signal cancellation problems. The
modified scheme in this section i5 able to reduce the jammer in the signal band
by forming a deep null in the direction of the jammer. In addition, this scheme

also helps Iin preventing signal cancellation.

By separatitg the esired signal from the jammer during the adapration
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process, the existing signal cancellation problems with both the Weiner and non-

Wiener solutions in a Howells-Applebaum sidelobe cancelling array can ve

essentially eliminated.

There are two remarks about the filter-X| filtered-¢ LMS algorithm. First of
all, the desired signal is removed from the vector X and the error. hence the
weights are dominated by jammers and white noises only. Second. the same
notch filtering structures are used to provide phase delay balance when

emploving this special algorithm.
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3.5 Master-Slave Adaptive Sidelobe Canceller

In this section, we introduce another adaptive array technique that utilizes
conventional LMS algorithm and frequency-hop nature of the desired signal to
prevent signal cancellation. We call this scheme the master-slave adaptive
sidelobe canceller. The basic idea is to remove the desired signal from the inputs
of adaptive processor (known as the master processor). This is accomplished by
prefiltering the signal at each array element with a frequency-hop notch filter.
notching in accord with the signal’s frequency code. Because the notch filter is
continuously hopping from bin to bin, jammers will pass through to the master
processor inputs and the adaptive algorithm will attempt to eliminate them. The
set of weights derived {rom this master processor are then copicd into a slave
processor. The slave processor containing the desired signal as well as the
jammers will recover the desired signal while simultaneously suppressing the
Jammers. Provided the prefiltering is done identically on each element of the
array, nulls formed in the slave processor will be in the same direction as nulls

formed in the master processor.

3.5.1 Structure and Algorithm

Figure 3.7 shows a block diagram of the master-slave adaptive sidelobe
canceller. This scheme consists of two separate processors; a master processor
operating on prefiltered array signals and a slave processor operating on the

original array signals.  The two frequency-hop notch filters have the same

structures and are “hopping™ inoa manner that rejects the desired sional while

e i emEraamian takeNalal PREIPREIPY I I I Spne | )

it e aum anth Shl b/l A Al el N T TN W TN e

0 " o
PR Y K\

AL Aebe

S i




BuraazLtyaud yojou doy-Aouanbasy Gursn uaj|adued aqo|spis aatdepe uy  /°¢ aunbiy ]

' NONNE! -

. ¥3ILTI4 Iu%oz }
. MILSVH dOH-AININD3IYA L
: (z)4 k
: . ¥31714 N
_ IA1LdVOY o

|
-

&

& :

52 -

-

-1
A v Al s .8

5 ) ¥3ILTI4 HOLON "
v dOH-AININDIY o
w- .
. ENVAR

] Ad0D 0

. ° .A ...q.

£ ()4 2# INIW3T3 o

A \\ YNNILNY -

b’ - .

! 10d1no -+ :
- <9,

! L# 1H3W33 o
YNNI LINY o




[t SadCIg B AT R A N e JuEE are

B S5iy e B S

|
L 3

T

T et e e Sl SR R
Saesawh aee | Ca e AN ) - Y T W e v . PR -

-53-
passing out-of-band signals. This filtering operation removes the desired signal
from the adaptive master processor inputs. The output of the master processor
will contain no desired signal and is used only in the adaptation feedback. The
weights derived from the master processor are then copied into the slave
processor. The inputs of the slave processor come directly from the array

elements and are used to generate the useful array output.

Because the desired signal has been removed from the master processor, it
can no longer affect the adaptive weights. Non-Weiner signal cancellation results
from an interaction between the desired signal and jammers during the adaptive
process. Obviously removal of the desired signal from the adaptive algorithm will
eliminate non-Weiner signal cancellation. Weiner signal cancellation results from
the inability of the adaptive algorithm to distinguish between the desired signal
and the jammer. A high-power desired signal would be nulled as if it were a
Jammer. A Howells-Applebaum sidelobe canceller will experience this type of
signal cancellation. By removing the desired signal from the inputs to the
adaptive process, both Weiner and non-Weiner signal cancellation can be

eliminated.

It remains to demonstrate that the presence of frequency-hop notch
prefiltering will not degrade the ability of the adaptive array to null jammers.
This is most easily demonstrated by visualizing an equivalent jamming scenario.
Assume for the moment that the only signals received by the adaptive array
originate from either the jammers or the desired siznal. That is, assume there is

nooambient thermal notse. Then the effeet of the frequency-hop noteh filters can
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be “‘pushed” into the source of both the jammers and the desired signal to
generate the equivalent signal environment shown in Figure 3.8. The notch
filters have been moved from the processor inputs to each directional signal
source. Since the frequency notch hops from bin to bin in accord with the
hopping of the desired signal, the desired signal is eliminated {rom the conceptual
signal environment as indicated by the large X. The equivalent jammer is
generated by filtering the original jammer through the frequency-hop notch filter
as shown. Since the adaptive weights in the master processor are affected only
by this equivalent jammer, conceptually the master processor will sce no desired
signal present. By this means it aids all Howells-Applebaum sidelobe cancellers,
since the criterion ol power minimization applies only to the jammers but not to
the desired signals.

A typical frequency-hop spread spectrum signal will hop among 100
different frequency bins spending approximately 10 usec (the chip duration) in
each bin [3.6]. On the average the frequency-hop signal will spent only 19 of its
time in any given frequency bin. Provided the time constant of the adaptive
algorithm is chosen to be at least several times the chip duration, (for example,
100usec), the average effect of the notch filter is to slightly reduce the apparent
power of the jammer. If the time constant of the adaptive algorithm is
comparable to or smaller than the chip duration, then the apparent jammer will
be nonstationary and the adaptive weights will try and track the time varying

situation.

Figiure 3.9 shows an improved methods for generating the overall system
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output. Instead of taking the output of the slave processor alone, the difference
between the output of the slave and the master is taken. Generating the array
output in this manner helps reduce the out-of-band jammer components and is
essentially equivalent to filtering the slave processor output with a bandpass filter
centeied at the current frequency-hop bin, as shown in Figure 3.10. This is best
explained by noting that the output of master processor contains a residual
armount of the jammer component outside the signal band while the output of
slave processor contains almost the same amount of out-of-band jammer residual
in addition to the desired signal. By subtracting the two outputs. the out-of-
band jammers in the master processor output cancels the out-of-band jammers in
the slave processor output. effectively creating a bandpass filter on the output of

the slave processor, as illustrated in Figure 3.10.

2.5.2 Simulation Results

Simulations of the two-element adaptive array shown in Figure 3.7 and
Figure 3.9 have been conducted. Assume that a BPSK frequency-hop signal is
emanating from one direction, and a broadband jammer from another direction.
A broadband jammer was generated by passing uncorrelated noise through a
Butterworth bandpass filter. The noteh filters are tuned to the center frequency

of the desired signal.

For the first experiment, the power of the jammer was set to 100 and the
power of the desired signal was set to 1. Also. the desired signal was “frozen” to

one frequeney. that s it was net allowed to hop. Power spectra at various stages
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of the processor are shown in Figure 3.11. The top plot shows the spectrum of
the signal received by one array element. Without spatial processing. this input
signal is dominated by the jammer and the sinusoidal signal can not be seen.
The middle plot shows the spectrum at the output of the master processor after
convergence and the bottom plot shows the spectrum of the output of the slave
processor. Notice that the sinusoidal desired signal is well above the background
interference level in the slave processor output, whereas this desired signal has
been notched out of the master output. In addition. the interference has been
greatly reduced by the 10-to-1 scale difference of the input signal and master

output spectral plots.

Figure 3.12 shows the time domain waveforms at the slave processor output
and the output after differencing the master and slave processor output. For this
experiment the desired signal was not frozen and was giving rise to the three
distinct frequency hops shown. At the slave processor output, the periodic nature
of the desired signal can been seen but it appear to be a rather noisy sinusoid.
After subtraction however, almost all of the out-of-band jammer has been

removed and the sinusoidal desired signal appears very clean.

Apparently. identical structures are required for those two frequency-hop
notch filters to preserve the relative phase. The nulls formed in master processor

will be the same as nulls formed in slave processor.
Assumie for the moment that the frequency-hop notch filters are not present
in Figure 3.7, In this case. if the desired signal was of a power much greater than

that of the jammer sonrees, the alaptive array wonld farm o null in the direction
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of the desired signal. However, with the notch prefilters present, the desired
signal is removed from the input to the adaptive master processor and therefore
the power of the desired signal can not affect the weights. To illustrate this, two
experiments were conducted each with identical parameters except for the signal
power. In one experiment the signal power was set to 1 while the other the
signal power was set to 40. Again, the desired signal was frozen to one
frequency.  After convergence, the array beam patterns were evaluated at the
frequency of the desired signal and plotted in Figure 3.13. As anticipated. the

two sensitivity patterns are identical.

To illustrate the wideband performance of the adaptive array, Figure 3.11
shows the array’s frequency response in the direction of both the signal and the
jammer. The horizontal axis is normalized frequency. The desired signal was
hopping among 128 different frequency bins and covered a normalized frequency
range between 0.15 and 0.35. Notice that the response in the signal direction is

fairly flat over this bandwidth and the response in the jammer direction is

virtually zero over the jammer bandwidth.

For the above experiment, the time constant of the adaptive algorithm was
set to several times the bit duration. Thus the adaptive weights converged to a
constant value. Ilad the time constant been set to a value less than the bit
duration. the weights would have attempted to track the time-varyving jammer
speetruin. At any given instant, the frequency response in the jammer direction
would have been virtually zero over the bandwidth of the jammer except possibly

i the current frequeney-hop bins This conll ceenr Leeanse the not-h filters
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S, POWER = 1

-35 -20 -5 10
r dB

G, POWER = 40

-35 -20 -5 10
dB

e Figure 3.13. Comparison of the arra, bSeam pattern for
two different power leve:s of the signal.
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remove any jammer component in the current frequency-hop bin making them ’ 1
\
invisible to the master adaptive processor. However, since the bandwidth of the ]
<
notch filters is very narrow compared to the bandwidth of the jammer and the
- R
array's frequency response prefers to be continuous, the response in the ’ ]
frequency-hop bin should be about the same as the response immediate outside '
the bin. Thus a wideband null is formed in the direction of the jammer over the g
»
entire jammer bandwidth.
o - . . , : ]
3.5.3 Discussion and Conclusions » 1
The master-slave adaptive sidelobe canceller can eliminate signal/jammer -
interactions by using frequency-hop notching.  Conventional LMS algorithm is
L
used in this scheme. The improved scheme results in better frequency filtering. _—
. [t can also be decomposed into two filtering stages; the first spatial filtering, the o
. . . . . . h
e second frequency filtering. This scheme still results in a soft-constraint adaptive )

e,

array. The gain in the signal's direction is determined by the jamming situation.
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3.6 Master-Slave Frost Adaptive Beamformer

In this section we propose a master-slave Frost adaptive beamformer to
prevent signal cancellation in adaptive arrays. The key idea is to remove the
desired signal from the master adaptive beamformer by frequency-hop notch
filtering. This scheme basically is similar to the scheme in previous section,

except that it can retain an assigned gain or a linear constraint in the look

direction.

Figure 3.15 illustrates a block diagram of the master-slave Frost adaprive
heamformer. There are two identical ['rost beamformers used in this scheme.
One is the master, and the other is the slave. The master beamformer copies the
weights into the slave one. The Frost beamformer imposes a linear constraint in
the desired look direction. The array elements received the jammer as well as the
desired signal. A bank of frequency-hop notch filters are used to notch out the

desired signal from the receiving array elements.
o o

Since the jammers are transparent to the frequency-hop notch filters, they
will pass through to the master beamformer inputs and this master beamformer
will attempt to eliminate the jammers. By copying the weights from the master
into the slave beamformer, this slave beamformer containing signal and jammers
will recover the signal while simultancously suppressing the jammers. The look-
direction constraints are sustained as usual. and the jammers are nulled. By
removing the desired signal from the master beamformer, signal cancellation can

be eliminated.

Simulations for a two-element master-slave Frost adaptive beamformer are
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conducted to verify its effectiveness. In this experiment, a unit gain with zero
phase constraint is imposed in the signal direction. Figure 3.16 shows a beam
pattern of this modified beamformer as the adaptive process converges. A
wideband null in the direction of the jammer is about 20 db below the sensitivity
in the signal direction. Notice that the sensitivity in the signal direction is

constrained to 0 db.

Figure 3.17 shows the frequency responses in the directions of both the
sighal and the jammer. Again note that the frequency response in the signal
direction is sustained to unity zain with zero phase. and the frequency response
in the jammer direction forms a flat null over the bandwidth of the jammer.

Figure 3.1% compares both the time domain waveforms of the slave output
and the system output when the signal is hopping. The system output results in
a cleaner waveform than the output of slave beamformer. The system output is
generated by subtracting the master output from slave output, and this
subtraction results in a band-pass filtering as was seen before. The idea is

illustrated for the Frost beamformer in Figure 3.19.
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NOTE: THE GAIN IN THE SIGNAL'S
DIRECTION IS O dB.

Figure 3. 16. A converged beam pattern for the
master-slave Frost beamformer.
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FREQUENCY RESPONSE
AT SIGNAL'S BEARING

N
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B.88

g.84d

FREQUENCY

FREQUENCY RESPONSE
AT JAMMER'S BEARING

]
B.52

B.88

Fiqure 3.17.

FREQUENCY

The frequency responses of the master-slave Frost
beamfromer in both the directions of signal and jammer.
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3.7 Coherent Detection Results

So far, we have suggested several effective methods for adaptive arrays to

. combat signal cancellation. The comparisons and discussions are focused on the

output of adaptive arrays. In this section, we first discuss a correlation technique

to detect transmitted data from the output of frequency-hop adaptive arrays, and

then compare the results for frequency-hop adaptive arrays and conventicnal
adaptive arravs,

As presiously shown in Figure 3,10 the array output is mixed or multiplied

by a sinusoid generated from the local oscillator. This local oscillator is operating

at the known hopping frequencies and mixed with proper phase shifts for

different frequencies. Then it performs an ‘“integrate and dump’™ operation

within a certain time interval. the chip period T. This correlation technique is
referred to as coherent detection or matched filtering. The decision maker
F‘ following the integrate-and-dump consists of a set of thresholds to detect if the

binary data is either + 1 or -1, or 0 when no signal is transmitted.

L The following is a brief analysis of the coherent detection. Consider a
P‘. . . . . .

3 frequency-hop digital communication system, where the signal frequency at any

given time is assumed known at the receiving site, and only one bit of

‘ mformation 1~ transmitted at each frequeney at a time. The system operates

with constant envelope, binary phase-shift-keved signals of the form

s(t) = Avcos[ «t + o(t)].
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A = a constant amplitude

w = hopping frequency known by the pseudo-random code generator
‘ 0 for binary +1
olt) = T for binary -1

By using the coherent detection method, we are able to recover the original

transmitted data. Now let the array output be

y(t) = s(t) + n(t)

where
[ acos{ <t + oft)+ nlw)] with presence of signal
s(t) =
l 0 with absense of signal
n(.<) = the phase shift of adaptive filter
E [n(t)] = 0

the output of the integrate-and-dump is described as

t+ T
Z(t) = [ y(t)cos[wt + ylw)] dt
t
t+ T 1 t+Tl
= | — acoso(l) dt + f -;acos[ Wt oty + 2] dt
to- t-
t+ T

[ nltyeos ot = L]

4

Sinee the second and the third terms will he averaged out to be zero, the output

of the tegrate-and-dimp wonld Le
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1
Z(t) = ;acosg‘)(l)T,
or
f .
;aT if ¢(t) = 0
-1 .
Z(t) = TGT if oft) = =
0 if no signal

Figure 3.20 shows two output plots of the integrate-and-dump. The top plot
correspends  to a conventional adaptive array. whereas the bottom  plot
corresponds to one of the suggested frequency-hop adaptive arravs. An encoded
frequency-hop signal is used in the presence of a jamming situation. The
transmitted data sequence is 1, -1, 1, 1, -1, -1, then nothing. It is clear from the
top plot that signal cancellation appears in the conventional adaptive arrayv. and
that sometimes this cancellation effect can be severe enough to cause false data
decoding. For the suggested adaptive arrays, the integrate-and-dump integrates

very clearly and steadily. This demonstrates the effectiveness of frequency-hop

adaptive arrays.
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IV. FREQUENCY HOP NOTCH FILTERS

In Chapter III we suggested several effective schemes for adaptive arrays to
eliminate signal cancellation. The frequency-hop notch filters are always required
in these schemes. In Chapter IV, we present two methods to implement a
frequency-hop notch filter. One 1s based on the structure of DFT. and the other
is based on the structure of adaptive noise cancelling.

This chapter has four sections. Section 4.1 gives a brief introduction of
notch filters. Section 4.2 discusses the DFT frequency-hop noteh filter. Section
4.3 discusses the adaptive frequency-hop notch filter. The properties of
frequency-hop notch filters such as transient response, tand width, and spectral

shaping are investigated and compared in Section 4.-L.

4.1 Introduction

There are a variety of notch filters available for frequency-hop spread
spectrum systems. Most of these noteh filters fall into three categories: the all-
zero type, the pole-zero type. and the all-pole type. An all-pole filter always
requires an infinite order realization to create a stop band or a noteh in the
frequency response. Thus, it is not practical to implement an all-p- le notch filter
for frequency-hop svstems. For this reason. the all-zero and the pole-zero types
witl be considered hereo An all-zero noteh filter can be implemented by using the
stounetire of the Jdiserete Fourper tran-form (DEFT). Sinee the DT can be

rezerded asoa bank of bandepass filters TR Gne may ereate a bonedsreiect or
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notch filter by rejecting a selected frequency band. For pole-zero notch filters. a
simple design can be had which is based on the structure of adaptive noise
canceller. Glover [2.4, 4.2] showed such a structure as a two-pole-two-zero notch

filter centered at the frequency of a reference signal.

When used in frequency-hop adaptive arrays, some important factors of the
filter must be considered. These include transient response, band width, spectral
shaping, and feasibility. The data transmission rate, for example, strongly
depends on the acquisition time in such a spread spectrum systemn. The
acquisition time is increased by a slow transient response of the notch filter.
Hence. the transient response of the filter plays an important role in determining
the data transmission rate. The information bandwidth can also affect the data
transmission rate. Spectral shaping may cause signal distortion and decrease the

signal-to-noise ratio (S\NR).
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4.2 DFT Notch Filters

In this section, we analyze the {requency response of the DFT notch filter,

then develop its transfer function, and finally discuss the limitations of this filter.

Consider the DFT notch filter shown in Fig. 4.1. The input signal feeds into
a tapped-delay-line (TDL) to create an N-element vector consisting of delayed
signal values. The discrete Fourier transform is applied to this vector to generate
N output bins. Only the switch of a selected output bin is open. The rest of the
other switches are closed, and the sum of the N-1 remaining DF'T output bins
forms the output of the notch filter. Notice that if all the DFT output bins
including the selected one are summed, the filter will have a transfer function of
unity. In other words, if all the DFT output bins are summed together, the
filter's output is the same as the filter’'s input. This is intuitively clear, because
the sum of all DFT output bins transforms into the first bin of the inverse DFT,
and the first bin of the inverse DFT is exactly the input signal. The filter’s
output, therefore, is equal to the filter's input, only if all the switches are closed.
When the switch of a selected bin is open, the filter's transfer function would be
unity minus the transfer function from the input to the selected output bin. It is
well known that the DFT can be viewed as a bank of band-pass filters, and that
the center {requencies of these filters are umiformly spaced between zero and the
sampling rate. When this selected frequency band is removed from the output, a
band-reject or noteh filter results. The ~elected bin which was not included in

the outpat sum. then, can be used to select the noteh’s froquencey band.

Lot thie input signal to the TDL in Fizo 01 be given by r{a). By definttion,
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DISCRETE FOURIER TRANSFORM

Figure 4,1,
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the m* output bin of the DFT is
N-1
ym(n) = E I(n_k)‘vmk ('11)
k=0
where
W= e/ V (4.2)

Eqn. (1.1} is a convolution between the input and the filter's impulse response.
Thus, it is convenient to express ({4.1) in terms of the Z-transform of r(n) and

Uy n) X(z)and Y, (z). By taking the Z-transform of (1.1), we have

H (.') _ )’m(:) _ Nz-l ,-/C.”/'m/f (4 3)
m X(z2) k=0 . ' '

Through some simple algebraic manipulation, we can rewrite (4.3) as follows,

1-:-V .
Hils) = T m=0L N ()

Note that (4.4) represents the transfer function of the filter from input to the mt
DFT output bin. Evaluating H,(z) with z = e/ gives the frequency response
of the m** filter. As previously mentioned, this is a band-pass filter with center
frequency w = 27m/N. The bandwidth of the band-pass filter is

2w

-T !

BW = (4.5)

>

where T is the sampling period. Notice that the bandwidth depends on the
value of No the size of the DFT. The larger the value of N, the smaller the
bandwidth. If all the transfer functions m (L 1) are summed, 7., all the output

~witches are closed, then we will have
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N-1
H(z) = X Hnl:)
=0
N-1 N-1
= ¥ ¥ ok

m=0 k=0

= N . (1.6)

Eqn. (1.6) shows that when all switches of the output bins are closed, the transfer
function of the filter, as shown in Figure 4.1, is nothing but a constant gain
which can be normalized to be unity. As all the output bins except the m! one

are summed to form the output, the transfer function of the filter will be

. -2V
Hi(:) = N-——— 1
- m e
N-1) - Niyme-t o -V -
= {A-T) . (4.7)
1-m et
When evaluated with z=e /=, the filter's {requency response results in a narrow

band rejection centered t normalized frequency w = 27m/N. Figure 4.2 is the
frequency response of a notch filter based on the structure of the DFT. The gain
is normalized to be unity, and the frequency of the notch for the case illustrated
ts a quarter of the sampling frequency. For this frequency response, an infinite
null is created at the selected notch frequency. In addition, the passband has a

ripple response. and this response may introduce signal distortion.

It appears that this filter structure does not result in a perfect notch filter.
There are several inherent performuance limitations of the DFT approach {1.3].
One of them s that of frequency resolution. The frequency resolution is roughly
the reciprocal of the time doterval over which the sampled data s available. A

secomd limitats 15 due to the leakage of the DET. Implicit windowing of the
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Figure 4.2.

The frequency response of a

FREQUENCY

DFT-based notch filter.
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data always occurs when processing with the DFT, and the windowing effect
manifests itself as “‘leakage” in the spectral domain. In other words, energy in

the main lobe of a spectral response ‘‘leaks” into the sidelobes, ereating signal

distortion.
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4.3 Adaptive Notch Filters

Adaptive notch filters can be realized by adaptive noise cancelling
techniques. These techniques have been used for a variety of applications in
speech processing, array processing, and communication systems. The concepts
of adaptive noise cancelling are first described and derived by Widrow et.al. 12.3]
and later extended by Glover [4.2]. Figure 4.3 shows the structure of a noise
canceller with two adaptive weights. The error criterion minimizes the output
power of the noise canceller. The weights are adjusted by the LM alzorithm.
The primary input is assumed to be any kind of signal. With a sinusoidal
reference input, the adaptive noise canceller sums up the weighted in-phase and
quadrature-phase reference components, and then subtracts the sum from the
primary input. Glover has shown that there is a transfer function from the
primary input to the noise canceller output. This transfer function performs as a
notch filter nulling at the frequency of the reference sinusoid, and it can be
expressed as follows,

n

m-2cos(u, T)z+ 1

22 -2 -p)eos(w, T) = + 1-2u

where gt is the adaptive algorithm step size. w, is the frequency of the reference
input. and 7T is the sampling period. Equation (1.8) describes the transfer
function of a second-order notch filter. This notch filter has two zeros on the
anit cirele at the frequeney of the reforence sinusoid and two poles loeated along
the same angle as the zeros but at a radius, 1 somewhat less than one. The

bawdwidth of the noteh filter s
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Notice that the step size g of the LMS algorithm controls both the radii of the
two poles and the bandwidth of the notch filter. Figure 4.4 shows the frequency
responses of the adaptive noise canceller in Figure 4.3. The reference input is a
sinusoid with frequency w, and unity amplitude. Figure +4.4a and 4.4b
correspond to the large and the small value of u. respectively. The value of p
does not affect the notch's frequency. but it does affect the bandwidth of the
notch. The larger the value of g, the wider the bandwidth of noteh. Notice that
both frequeney responses have an infinite null at the frequency of reference
sinusold.  In addition, the passband has a flat response with unity gain. In other
words, the adaptive noise canceller can function as a frequency-controllable notch

filter by controlling the frequency of the reference input.

When used in frequency-hop spread spectrum receivers, this form of notch
filter offers casy control of bandwidth, an infinite null, and the capability of
adaptively tracking the exact frequency of the reference signal. Figure 4.5 shows
a method of implementing a frequency-hop notch filter based on adaptive noise
cancelling. A set of local oscillators are available, and each tunes to the center
frequency of one bin of the frequency-hopped signal. These local oscillators can
be used as the sinusoidal reference inputs to sn adaptive noise canceller a~ Lown
in Figure £.3. By sequencing through the different oscillator signals, the adaptive
nowse canceller forms a frequency-hop noteh filter.

A= mentoned before, the transient response is a crucial factor in frequeney-

hep adaptive arravs. Time-demain analvsise therefore s necessary for studving
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Figure

The frequency responses of the adaptive noise
canceller with different values of step size.
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Figure 4.5 A detailed structure of the frequency-hop
adaptive notch filter,
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the time constant, th. transient response, etc. The following is a state-space
analvsis for the adantive noise canceller. We define the weight vector as the
state vector. and will show that the difference equations of the adaptive noise

canceller describe a linear time-invariant system.

Consider a two-weight adaptive noise canceller in Figure 4.3, where the
primary input is denoted d. and the reference input is a pure sinusoid. The

canceller output ¢, is as follows,

o= dy -y
g o= Wolk) cos{ukT) + Wi(k)sin(whT) . (1.10)

The least mean ~quare (LNIS) aleorithm is given by
{ { 3 2 b

Wolh+ 1) = Wphtk) + 2 e, cos{ wkT )

Wik 1) = Wyk) + 2pep =in{ wkT ) . (i11)

where gt a constant step size. Substituting of (4 10) into (£.11), vields

Welk+ 1) 1 - 2cos (whT) 2ucos(wkT )sin(wkT) Wa k)
Wilk+ 1) “2cos(ukT)ein(uhT) 1 - 2750wk T) Wil
cos(uwkT)
+ 2 d, (112)
stn{uwhT)

[ _

i ('()x\'(/:‘/;T) 17 H'[‘,{/;)
; { (1.13)

sin{uhT) H'/r}‘-]

Notice that T b2 sfafe coquation and TEI3) s an oxdput cquation. These two

eopritions Dormy o poresal cpiation. or a st eespaer representation of the adaprae
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noise canceller with input d; and output ¢;. Although the transition matrix in
(4.12) is a function of the timing index k, it will be shown that the adaptive noise

canceller is a linear and time-invariant system. Since the transition matrix is

symmetric, it can be decomposed into the form 4 A A~ where

cos(wkT) -sin(wkT)
A(k) = { (4.14)
sin(wkT) cos(wkT)
and
1-24 0
A = ] . (4.15)
0 1

The matrix .\ is a diagonal matrix, and A is a rotation matrix with the following

properties.

A(k) = R*

cos(wT) -sin{wT)

R 2 (4.16)
sin(wT) cos(wT)

By the sampling theorem, the sampling frequency must be at least twice the

cutoff frequency of the sampled signal. This implies that

o< uwT <7 . (4.17)

Premultiplyving (1.12) by A-Y(£), we Lave
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1 ANk Wk+1) = A ANk W) + 2u 4, [ J : (4.18) ®,
' 0 T

Define the weight vectors W(k), V(L) as the following,

Wa (k)
W(k)

e

L X
L e e ko . ol

u .'1-_" "l v
o

Wy(k)

Vik) 2 AN k-1)W(k) (4.19) , 1

then (£.12) and (1.13) can be rewritten as

| _ o
} Vik+1) = F-V(k) + G d, T
[ € = H-V(k) + d; (4.20) ,
| Wik) = A(k-1)-V(k) , 7
where L 1
F 2 AR L
T
T 4
¢ A 9y [1 o] (4.21) ®,
T . ‘.‘
a [ ]
Notice that R, defined in (4.16), is a constant rotation matrix and its element }
q values depend only on the relative sampling frequency w7T. Since the matrices 1
4 U
F F, G, and H are all constant, the system described by (1.20) is a linear time- ...-4
A
a v d
X invariant syvstem. This is true for the adaptive noise canceller only when the e
reference input is a pure sinusoidal signal.
e 2 .
. The complete response of the system consists of both the zero-state response
i and the zero-input response. By setting initial weights 1W(0) zero, we can
‘ ..
i

.......... el aadhalld
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directly solve the zero-state response, which is

k-1
Vik) = ¥ FH' G4, . (4.22)

n=0
By zeroing the primary input d;, we may expand (4.20) for zero-input response.
This means that,

Vik) = FF- V(o) . (4.23)

Thus, the complete response will be the superposition of zero-input response and

zero-state response, il.e.,

k-1
Vik) = FF-v(0) + Y FF" G d,

n=>0

By (4.19) and (4.20}, we can explicitly express the complete response in closed

form as

W(k) = A(k-1) V(k) ,

— pk-l k k-1 L= k-1-n P
= R*"F*R WO+ R > F G d, (1.24)

n =0

where F, G, H, and R are defined in (4.16) and (4.21).

The transition matrix F plays an important role in the transient analysis of
the adaptive noise -anceller. Its eigenvalues determine the character of the
transient response. Through the eigenvalues, the stability and the time constant

of the response can be investigated. According to (1.21), the transition matrix F

I
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{1 - 2u 0} [ cos(wT) sin(wT) ] j

0 1] l-sin(wT) cos(wT) ]

:

(1-2p)cos(wT) (1-2p)sin(wT) ;

= (4.26) 3

-sin{wT) cos(wT) 1

>

The eigenvalues of F shall satisfy the following equation, {
A" - 2(1-ptycos(wT) N+ 124 = 0 . (1.27)

Notice that these eigenvalues of F are the same as the poles of the filter's y

transfer function in (4.8). Solving (4.27) for the eigenvalues, we have ]
N, = (1-p)cos(wT) £ V (1-p)cos®(wT) - (1-2u) . (41.28)

There are two possibilities for the eigenvalues. One is the real case, and the -1
other is the complex case. For the case of real eigenvalues, the term inside the

square root must be greater than or equal to zero. This implies that - 1

(1-p) cos®(wT) > (1-2p) :

or ,i

o (wT N

> _ﬂﬂ_(_w_)__ 4.29

#= 1 + sin{wT) (4.29) j

For stability, the absolute values of both eigenvalues in (4.28) must be less than ‘}

one so that transients will die out. This implies that 1

q

1-{512 >0 (4.30) B

or equivalently '

"4
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- A-p) (ax B) >0,
where
a = 1-(1-p)cos*(wT)
3 g = cos(wT) v (1-p)*cos*(wT) - (1-2u)
t As long as (4.17) and (4.29) hold, we can prove that
_: (ax J) >0

Thus. eqn. (4.30) implies that g must be less than one for the stability

‘ requirement. Combining the stability requirement and the real eigenvalue

—

criterion in (4.29), we will have

sin(wT) < < 1

1+ sin(wT) — s 431

In other words, if p is in the region of (4.31), the adaptive noise canceller will be

stable with an overdamped transient response of the adaptive weights. ’

For the case of complex conjugate eigenvalues, the term inside the square

root in (4.28) should be less than zero. This implies that

e 1 ey v v VW GRS “’Y.‘

sin(wT) !1

. 4.32 Iy

# 1+ sin(wT) (4.32) )
a .

- For stability, the modulus of the eigenvalues should be less than one to result in » j

¢ -

’ a stable filter. In other words, o

*_ B

) 1 T

3 [N | = 1 1-20]% <1 . (4.33) ’ |

From (14.32) and (1.33), the valuc of pu for a stable adaptive noise canceller with j'.‘,

»

underdamped transients should be )

; »
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0 < p < —snlwl) (4.34)

1+ sin(wT)
Combining (4.31) and (4.34) vields a stable range of the step size :
0 < p <1 . (4.33)

Figure 4.6 shows the stable region of u versus the relative frequency w7T. The

region is partitioned into two subregions by the curve

_sin(uT) (4.36)

1+ sin{wT)

Region I corresponds to the overdamped transient response of the set of weights,
whereas region II the underdamped transient response.

Now we can relate the state-space analysis of the adaptive noise canceller
with the property of the adaptive notch filter. Notice that for a second-order
notch filter, the poles are complex conjugates. These complex poles can be
controlled by selecting g in region II, which corresponds to an underdamped
transient response.

Let the time constant of the adaptive notch filter be denoted as r
Considering the eigenvalues in (4.33), we should have

L
M =P =t

or

= 1£.37)
" Tl 1-2 ' (153

If p is very small. the time constant will be
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. Figure 4.6 A stable region of the step size for the adaptive
¢ notch filter.
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- 1 ¥
T = — . (4.38)
r P |
h
Notice that the time constant is a function of g only, and that it is inversely ]
- proportional to the bandwidth of the notch as in (4.8). In other words, the -
. ]
- smaller the value of g, the longer the transient response and the narrower the {:j
notch. .
]
4
:
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4.4 Comparison and Discussion

In comparing the performance of the two suggested frequency-hop notch
filters, several issues must be considered. These include transient performance,
notch bandwidth. spectral shaping, and flexibility.

In frequency-hop spread spectrum adaptive arrays, high data transmission
rate is desired. The data transmission rate, however. is closely related to the
transient response of the frequency-hop notch filter. For each frequency hop, if
the transient response dies out very slowly, the required acquisition time will be

longer. Thus, long transient response slows down the data transmission rate.

Suppose the input to the notch filter consists of a frequency-hop signal and

white noise,
dy = a cos(ukT)+ ny

The frequency w is a function of time, and is randomly hopping. Consider the
moment that the signal and the filter's notch are hopping into a new frequency
band. Since the DFT notch filter is an FIR filter, the residuals of the last
frequency hop will still remain in the tapped-delay-line of the filter. These
residuals will then appear at the output of the notch filter until they are shifted
out of the tapped-delay-line. In other words, the transient response will
completely die out after a number of iterations equal to the length of the

tapped-delay-line.

The trarsient performance of the adaptive noteh filter depends on its
eigenvaliues or poles. As mentioned in Section L1 the adaptive noteh filter 15 an

20 Glter. and the time constant can be a measure of its dominant poles,
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l According to (4.37), the time constant is a function of u, which is »
-2 1
T= e x = (4.37)
In| 1-2p | Iz
(] The larger the time constant, the longer the transient response. Figure 4.7 shows .,-J

the transient responses for various notch filters. The signal is hopping from one
frequency bin to another, and the frequency-hop notch filter is notching - 1
accordingly. Figure 4.7a corresponds to a DFT notch filter. Since it is an all-
zero filter. the transient response completely dies out after N eveles, where N is

the order of the filter. Figure 4.7b and 4.7c¢ correspond to adaptive notch filters »

‘al

with different values of p. The larger the value of g, the faster the transient
respense dies out. The value of u, of course, should be in the stable region.
The bandwidth of the notch filter should be small, if high frequency

-_’_ resolution is desired. The frequency resolution of the DFT is proportional to the

gt N

number of frequency bins. The number of frequency bins is the same as the ’

i

number of taps in the tapped-delay-line. This implies that the DFT notch filter

must have a large number of taps in order to have a small bandwidth. This large

al

- number of taps, however, will cause a long transient response. Explicitly, the !_1
: bandwidth and the time constant of the DFT notch filter are
‘ . 2z »

q{ BH DFT = T+ N TDFT = 1\[ . . 1
V I\J 1
: ]
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The bandwidth and the time constant of the adaptive notch filter, according to

(4.9) and (4.3%). are

. 24 1
Bl = =X : = — ¢
T (1.9)

adaptive ) Tadaptive [

To have a small bandwidth, ¢ must be small. This small value of g however
may result in a slow speed of transient performance. Notice that high {requency
resolution will cause long transient performance no matter which filter is used.
Nonetheless. the adaptive notching may be more flexible than the DFT notching
For adaptive notching, the step size g can be easily adjusted to control the
bandwidth or the transient performance. For DFT notching, to adjust the
bandwidth or the transient performance means to change the length of the

tapped-delay-line and the length of DFT.

Another comparison concerns the frequency response outside the notch, ie. |
the spectral <haping. When pro cessing with the DFT, implicit data windowing
always occurs. This time-domain windowing introduces the passband leakage
effect. This inherent leakage effect then introduces distortion for the passband
signals. With the adaptive notch filter. the frequency response outside the notch
band is fairly smooth and flat. Thus. passband distortion will be negligible. In
this respect. the adaptive notching is clearly superior to the DFT notching.

In conclusion, for both thie adaptive notch filter and the DFT noteh filter, we
can easily select the neteh's frequeney by controlling the reference froquency and
the switched outpnt bin. respectively. Data transmission rate and distortion
[evels however. ean be very crucial i f2eueney-hop adaptive arravs, A~ such

ﬂ‘fi}-"l\'" nmr(’hmg pvrff)rms better than DFT n()!('hing;‘ <inece the 1;,;[,fi\‘“ notoc i
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filter has a flatter passband response than the DFT notch filter. In addition, it is
easier to control the notch bandwidth and the time constant when using the

adaptive notch filter.
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VY. PARALLEL SPATIAL SMOOTHING » )
r‘ ]
(, -
g
.
;_'. In Chapter III we applied the frequency-hop approach to eliminate signal ]
. . ’
cancellation in adaptive arrays. This approach is very effective when the desired .
signal is known to be a frequency-hop spread spectrum signal. In some e
applications the desired signal is unknown. and the available a priori information »
is the direction of the desired signal. Spatial smoothing techniques can be ]
applied with adaptive arrayvs in these situations. In Chapter V. we present a
) ]
method based on a spatial smoothing technique to combat signal cancellation. . i
Our only assumption is that the direction of the desired signal is known. We .
emphasize the Frost adaptive beamformer. Basically, this algorithm has parallel ’ 1
structure and requires the same computation power as any conventional 1
beamformer. Furthermore, when the adaptive processor reaches the minimum of . .;]
the performance surface, the total system output will be a maximum-likelihood ’
estimate of the desired signal in a spatial averaging sense. ]

This chapter is organized in four sections: Section 5.1 gives a brief
introduction and reviews previous work on spatial smoothing techniques. Section
5.2 presents a parallel spatial processing algorithm as a cure for signal
cancellation. Section 5.3 analyzes the proposed algorithm. Finally, Section 5.4 . ‘

compares the experimental results of both the proposed algorithm and the

previous methods.
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5.1 Introduction i
As previously shown in Chapter Il signal cancellation phenomena exist in B

]

. . . . . <

many conventional adaptive arrays. These effects can result in a signal loss in )
-

the case of narrow-band signals, or significant signal distortion in the case of 1
wide-band signals. ]
]

Duvall proposed a composite beamformer to prevent signal cancellation -1

1

when the signal direction is known. This beamformer however requires identical ]
array elements to perform the inter-element subtraction which removes the ]
4

desired  signal from the adaptive processor. Since identical arrayv elements 1
. . . : . 3
sometimes are not available, the spatial smoothing techniques here are used as an
alternative to combat signal cancellation. ;
Previous work wusing spatial smoothing techniques to combat signal 'A;

-']

cancellation is due to Widrow [5.1] and Shan [1.20]. These methods are briefly * ]
E

discussed below.

5.1.1 Spatial Dither Algorithms

The spatial dither algorithm was first proposed to prevent signal cancellation

by Professor Widrow at Stanford University [5.1]. This algorithm applies locally

controlled modulation to jammers arriving at angles other than the look -
direction. while leaving the signal from the look direction unmodulated and
nndistorted. The effect is to cause jammers arriving o the look direction to be

spread spectrally. thereby reducing jammer power intensity, '

To visualize the spatinl dithor algorithm Widrow explamed a0 <o ealled '
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*‘3/4-in plywood” approach as shown in Figure 5.1. The elements of an adaptive

E-c array are attached to a piece of plywood that provides a rigid support, so that
} :
the entire array can be moved mechanically. The idea of this spatial dither .
algorithm is to randomly dither in directions which are orthogonal to the look ‘1
EE direction. Far-field emanations arriving from the look direction will be 1
- f_-
E undistorted by the mechanical motion, while emissions from sources ofl the look 4
&
L-e direction will be randomly modulated. Through this random modulation on the ‘
| jammer, the array can break up the signal/jammer correlation.
F: Although the mechanical motion is somewhat not compatible with electronic B
) .
{ processing, the spatial dither algorithm provides a profound basis for adaptive
3 ‘: arrays to combat signal cancellation.

5.1.2 Spatial Smoothing Algorithm

Recently Shan proposed another spatial smoothing approach to eliminate
signal cancellation. He first showed that in a coherent signaling environment the
sample covariance matrix has some zero eigenvalues. Minimization of mean
square error with respect to the weights will steer the weight vector to align with
an eigenvector corresponding to a zero eigenvalue. The output of the
beamformer lence falls down to zero. With his spatial smoothing method, the
array will be able to restore full rank to the sample covariance matrix.

Figure 5.2 shows a picture of Shan’s spatial smoothing algorithm.  Auxiliary
antenna elements are used, and all the elements are partitioned into several

groups as shown in Figure 5.2. Note that all the groups for a given snapshot i
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time still contain the same signal, but the jammers in different groups are in
different phase relations. The algorithm then runs these groups one by one into
the adaptive array processor. Different running sequences may result in different

spatial smoothings, but the effect in breaking up the signal-jammer correlation is

still the same.

This method is found effective in applications to direction finding and
adaptive beamforming. For many signal cancellation problems, however, the
quality” of the array output rather than its output power is of great concern.
The recovered signal however is still sensitive to the adaptation rate, and another
form of signal distortion can result from using a high adaptation rate. For cach

snapshot, this method requires a considerable amount of computation to achieve

spatial smoothing.
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- 5.2 Parallel Spatial Processing Algorithm ','» :
(4 J
. In this section we present an approach called the “parallel spatial processing ]

algorithm™ to combat signal cancellation. In this algorithm, a number of sub-
beamformers having the same structures as above are used. These sub-
beamformers are arranged in a parallel way. Due to its parallel structure, the 4

algorithm will require the same computation power for each snapshot as any R

conventional adaptive beamformer.

Figure 5.3 illustrates a general block diagram of the algorithm. It consists of 1
L <4
. . . oo '
Y a linear array with L equal-distance elements. These L elements are partitioned

into .\ groups. where .,V is the number of sub-beamformers. Each sub-

beamformer has M/ input elements. The input elements of adjacent sub- .‘
beamformers could be partially overlapping. If the adjacent sub-beamformers ]
have overlapping input elements, every sub-beamformer should do the _‘:
overlapping in the same way. This implies that the total number of elements in ) X
the linear array should be less than or equal to M-N. Since every sub- J
beamformer has the same structure, each one can share the same set of weights. ' ~:

The parallel spatial processing algorithm is given as follows: For the first

snapshot, we use the first sub-beamformer to update the weights and then copy

Py

" the weights into the rest of the sub-beamformers. For the sccond snapshot, we '

use the second sub-beamformer to update the weights and then copy the weights

e —

into the rest of the sub-beamformers. So the adaptation process is sequentially
propagating one by one along the sub-beamformers. After the adaptation reaches

the last sub-beamformer. it restarts from the first one.  Meanwhile, for eacl
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snapshot, every sub-beamformer uses the same set of weights to yield its own

output. The system output is then generated by averaging the various delayed

outputs of all these sub-beamformers.

Basically, this shares common merits with Shan's spatial smoothing
algorithm. The weight propagation from one sub-beamformer to another will
incorporate spatial smoothing as well as time averaging in the sample covariance
matrix. Thus, the rank of the signal space would be restored when coherent
situations take place. With the parallel structure, the algorithm also provides a
better estimate of the desi e signal.

Analysis in the next section will show that the algorithm results in a
maximum likelihood estimate of the desired signal in a spatial averaging sense.
In addition. the algorithm only takes one adaptation to generate one system data
output. This contrast to :N adaptations in Shan's method. As the name of the
algorithm implies, the set of weights is spatially propagated and updated along
the sub-beamformers, and the received signals are processed in parallel to

produce the system output.
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5.3 Analysis

In this section an example with N Frost sub-beamformers is analyzed to give

a general insight into the proposed algorithm.

i Each sub-beamformer has M input elements. The adjacent sub-
beamformers have JM-1 overlapping elements. This means, there are total
I M+ N-1 elements in the linear array. Suppose the desired signal and the
jammer are impinging on the array; the signal is from the look direction and the
jammer is from an off-look direction. Since the elements of the linecar array are

. equally spaced, each element receives

X, (k) = Aes™*T 4 BeukT+jo+jim-Jud = — 1 9 .. A4 N1 (5.1)
m

! Denote the signal vector received at the n'* Frost sub-beamformer by
Zy(k) 2 [ Xplk-n+1) Xpui(k-rn+1) - Xppp(k-n+1) |7, (5.2)

where m is the labelling number of the first element of the n'* sub-beamformer. ’

C TERY v

Mathematically, the algorithm can be expressed as the following,

yalk) = WT(k) Z,(k) ’_j

g Wk+1) = P (W) + py ()2, (k) + F (5.3) o
T

- where v
y k= the discrete time index ’ .

Mod(k,N)+ 1

b ]
l
. ) ]
n;'A-AJ;‘;_L

y .(k) = the output of the n'* Frost sub-beamformer
Z,(k) = the complex conjugate of Z_ (k) » ‘
; 4
! P. F = the constant vectors of the Frost algorithm :
The system ontput is generated by averaging the various delaved outputs of each -
L2
‘




- . e Pt et AR st AR sl S Cala
L e as L - B sy wrew DA ST MR ArEL NN S M8 N © . BN

| ’ 4
- 114 - )
' of the sub-beamformers and is given by . :
‘_i
l - -
y(k) = ~ (Y v(k) + yv k-1 + + y (k-N+1)) . (5.4) ]
E The linear constraints in the weights is expressed as the following, ’
N
> Wik) =1 for any k& . (5.5) ]

1=]

It is easy to find from (5.2)-(5.3) that the output of each sub-beamformer is

A 4
yLlk) = 3 WALN, o (k-n+1) n

= 1.2 .\ (5.6) 4
L =1
4 ‘ ._ i
For the £+ n-1'* time instant, one may have -
Mo ] .
5 yalktn-l) = 5 Wilk+n-D¥, ) 7 =12 N . (57 ,
¥ V=1

The overall system output y (k+ .V-1) is

g y(k+ N-1) = 71V-.[y1(k)+ Yokt 1)+ 4 ”“’*‘V'”}
’ 1 IV
= 5 X ¥alk+n-1) (58)
n==1
E

Substituting (5.1), and (5.7) into (5.8), one has

l. ]
o [

1
kT kT4 § 1 N M e
Y(k+ N-1) = Ae/U* T 4 BeivkT+ie. = T S W (k+ n-1)e/li+n-2)va ]

« N n=1 =1 ’
- —_ Ae}wlcT + Be)ukT+J¢ . L\/ Z a(n+ k) cJ(n—I)w.\ (5.93) j
1 n=] 3
where 3
e Mo TN ; §
aln+ k) = .Zl Wolk+ n-1)elt 0 . (5.90) )

= .
]
N tice that (5.9) can be a quality measure of the system output. Accord;ig 1o )
. 4
. o
1

. . “ St . .- a - y 1
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this "equation. the system output contains the desired signal plus a coherent
jammer which is multiplied by .. spatial averaging term. This spatial averaging
term may determine whether the whole adaptive beamformer could recover the
desired signal or not.

Another interesting thing is that the weights are modulated by the spatial

frequency e/l-11#3 a5 shown in (5.9b). This modulated term a(n + k) shown in
(5.9b) is a function of the time index k. As the adaptive process reaches the

minimum of the performance surface, it is very likely that

W.k+n-1) = W;(k+ NV-1) n=12"-,N-1
Thus, it is easy to obtain the following
y(k+ N-1) = AT
o Y .
+ Beiuxt+10 . Q(/J+ ‘\') . _1\/. Z el(n—l)w.k _ (5.10)
N op=i

There are two factors in {5.10) which can modify the jammer. The first factor is
a function of time as shown in (5.9b), and is subject to the least-mean-square

criterion and the linear constraint. The second term is given as

which is the summation of NV uniformly-spaced terms on the unit circle. Notice
that this results in a very small value, close to zero, and it also asymptotically
approaches zero as N goes to infinity. When the aduptive process reaches steady
state. the coherent jamming effect will be greatly reduced by such a modification,

Therefore if a large number of sub-beamformers are used, it is ensy to get
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lim y(k+ NV-1) = Ae/™T (5.11)

N—oo

If the desired signal is stationary, the expected value of the system output will be
a minimum-variance estimate of the signal. Capon ef.al. [1.5] showed that a
minimum-variance estimate is equivalent to the maximume-likelihood estimate.
Since the spatial summation factor asvmptotically approaches zero, the syvstem
output hence is 2 maximume-likeliheod estimate of the desired signal in a sbnli;ll
averaging sense. To make the spatial sumrﬁation factor close to zero. the number
of sub-beamformers, N should be larze enough so that the terms e//* 7142 <pan
the unit eirele. This implies that if the incident angle of the jammer from
broadside is very small, then a large number of sub-beamformers are required.
Finally. the signal estimate appears at the system output with a delay of V-1

sampling periods.

Although the analysis is based on the Frost linearly constrained beamformer,
any other known adaptive beamformer can be used as the sub-beamformer of the
parallel spatial processing algorithm. The spatial averaging effect on the jammer

from an ofl-look direction can still be achieved.

poe
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5.4 Simulation Results

Experiments were conducted for the parallel spatial processing algorithm.
The structure in Figure 5.3 with four Frost sub-beamformers was simulated in a
coherent signaling environment. Each sub-beamformer had three input elements.
The adjacent sub-beamformers had two overlapping elemeats. In other words,
the linear array made a total of six elements. Each element was assumed omni-
directional, and the inter-element distance was half wave-length. The ambient
white noise was assumed negligible. The constraint was set up to be unit gain
and zero phase over the {requency band from zero to half the sampling rate in
the desired direction. The initial quiescent beam pattern of the proposed scheme
is shown in Figure 5.4. In this quiescent beam pattern, some inherent nulls exist
in the ofl-look direction, and sometimes these nulls are referred to as grating

nulls. The constraints in the look direction were still preserved.

Now suppose a desired sinusoidal signal arrived from the look direction, and
a coherent jammer arrived 45 ° off the look direction. Both the signal and the
jammer had equal power intensity of 1. Figure 5.5 shows a beam pattern of the
proposed adaptive beamformer when the adaptation process converged. A sharp
null with a depth of nearly -70 db was formed in the incoming direction of the
jammer. The linear constraint in the look direction was still preserved at unity.
The beam pattern resulted as des'red. We leave the output to the last

experiment.

The next experiment was similar to the first one except that the desired

signal now was a wide-band signal and the jammer was stil! a sinusoid at the
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w

Figure 5.4. A quiescent beam pattern of the proposed scheme
using the "parallel spatial processing algorithm."
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Figure 5.5. A converged beam pattern of the proposed scheme
using the "parallel spatial processing algorithm."
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center frequency of the signal band. Figure 5.6a shows the power spectrum of
the desired signal. Usually, the output spectrum of the Frost beamformer was as
shown in Figure 5.6b, where signal cancellation occurred in the jamming
frequency band. In contrast, the signal-cancellation-free output spectrum for the
parallel processing structure is as shown in Figure 5.6c. One can easily see that
the original signal spectrum was recovered without any signal cancellation effect.
Figure 5.7 shows the corresponding time waveforms of Figure 5.6. The proposed
scheme obviously resulted in a better replica of the desired signal than the
conventional Frost beamformer. Note that the output of this parallel spatial
processing algorithm was delayed for several sampling periods in contrast to the
desired signal. Besides, the transient response of the adaptive process died out

after about 60 adaptations.

The final experiment compared the output qualities for both the proposed
method and Shan's spatial smoothing method. The desired signal, shown in
Figure 5.83, was set to be of unit amplitude. A strong, coherent jammer arrived
off the look direction. Both methods were tested by using the same Frost sub-
beamformers running at a high adaptation rate. The beamformer output of
Shan's spatial smoothing method is shown in Figure 5.8b, and the output of the
proposed method is shown in Figure 5.8c. Apparently, Shan's method introduced
some amplitude and phase distortions. For the proposed method, the desired
signal was recovered without any distortion. but with a delay of several sampling

periods.
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3.4.1 Conclusions

e

The *‘parallel spatial processing™ algorithm for adaptive arrays was proposed
to combat signal cancellation effects in coherent jamming environments. The

effectiveness of this algorithm is verified by several computer simulations. The

. ' .
sasbasdl  eimciondn

3

bl 4L

algorithm requires the same computation power as conventional adaptive arrays,

although it also requires additional array sensing elements. Analysis shows that

Py

the svstem output results in a maximum-likelihood estimate of the desired signal

in a spatial averaging sense.
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APPENDIX A o
A COMPLEX ALGORITHM FOR ]
LINEARLY CONSTRAINED ADAPTIVE ARRAYS ]
¢
A.l1 Introduction
The so-called “Constrained LMS™ algorithm, a simple stochastic gradient ® ‘
descent algorithm with a linear constraint on the adaptive weights has been
applied to a variety of problems in geoscience, seismology, and antenna arrayvs j
|
[A.1-A4].  Algorithms of this type have been devised by Frost [1.10] for ]
9
implementation with real signals. Following Frost, the adaptive array processor '
of Figure A.1 has N tapped-delay-lines and L taps per TDL for a total of NL . :
1
adjustable weights. The NL-dimensional sample vector X at the time of the & 1
adaptation is
T ..
X(k) A [zy(kA) z9(kd) - 2y (kA (A1) ]
k
1
The NL-dimensional weight vector W is )
_. A
WS [wy we o owy)T (A-2) ]
The output of the array at the time of the k' adaptation is ) ]
. Ty (1. T 1y . ®
ylk) = WIX(k) = X(H)'W (A.3) ]
1
and the expected output power of the array is
E[f0)] = EWTX(NET I = WTR, W (A1) ¢
where
..
!
’ i
S - e ‘e b o S ; o J
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Figure A.

1. A detailed structure of the Frost adaptive array.
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R, & E[X(HX(K)T] (A5)
is positive definite.
The constraint for desired frequency response characteristic of the target
signal is defined in such a way that the linear combinations of the weights on the
“th

J* vertical column of taps sums to a constant number f; as shown in Figure

A.2. The requirement is thus given by
T - : s ¢ . :
cTw = f; j=1,2 L (A.6)
where the \NL -dimensional vector C'j- has the form
C; = [0.0 1...1 0.0 |7 j=12 ..L . (A7)

N— —— NI

(3-1)N N (L-j)N

. {
Furthermore. we define :
2 (¢ .. ¢ . Oy (A.8) . 1
AN SR SRR o LA (A.9) B
The constraints (A.6) are now rewritten as :
)
cTw = f . (A.10)
With (A.4) and {A.10), the optimal weight vector W,, may be obtained by
minimizing W7 R,, W over W subject to the constraints CTW = f. '.
For deterministic gradients, assuming that CTWk+1) = [. the
constrained LMS algorithm. which has been derived in [1.10], may be expressed )
as
’ .
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Wk+1) = W(k) - powH(W(K)
= W(k) - p[R,, W(k) + CXK)]
= P[W(k)-pR,W(k)]+ F
where
HW) & L wTr, w4 aTicTw-y)
P A r-cclTeyteT
F 2 cicteylyy
. = a constant convergence factor

(A.11)

(A12)

For stochastic gradients using real data, substituting R, with N (k)\N(&)7T

gives the constrained LMS algorithm as

W) = F
Wik+1) = P{W(k)-py{k)X(k)] + F

A.2 Derivation of Complex Algorithm

Some applications of adaptive arrays require phase delay for tlie constrained

algorithm. For example, complex weights will be needed to render quadrature

phase shift for a narrow-band signal at an intermediate frequency. The complex

constrained LMS algorithm therefore must be capable of adapting the real and

imaginary parts of W simultaneously, minimizing in some sense both R, {y(k)}

and [, {y(k)}. The complex sample vector X(k) and the complex weight vector

W are given by

X(h) 2 Np(h) + Xk

(:\. 1)
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W 2 Wp + iW, (A.15)

where the subscriptions R and / denote the real part and imaginary part,

respectively. The complex output is correspondingly given by

I

y(k) yp (k) + dy (k)

i

X)W = WTX(k) {A.16)
According to (A.18) the expected output power of the array is
Ellyt)1?] = EfWIX(nX)T) = WIR,, ¥ (A7)

where

l

byk) 12 = yglk) + y/th)
R E[X(HXk)T] . (A.18)

it

Iz

Note that for complex signal cases the covariance matrix /,, is Ilermitian and

positive definite. Also the complex constraints are given by
cTw = f (A.19)

where

[ = T+ if;

= same as {A.8)

The problem of finding the optimum complex weight vector W, is now

formulated as

mintmize H'Tfi‘u [t
W

. . . B . . A PP T et a o
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subject to CTW = f
Note that all multiplies and adds are complex. For simplicity, we may form

the cost function H(W) by introducing an L-dimensional complex vector of

Lagrange multipliers \ = X\ + t)\; such that

)= 9 )=

H(IV) WIR, W + N CTWe-fr) + \F(CTW,-f))

I

[WE + W]} R, [We- iW))

+ NUCT W = fo)+ 2(CTW, - 1)) (A.20)
For gradient descent technique [A.5-A.6], we have

VwH(W) = 9y, H(W) + iy H(W) (A.21)

where the gradients of H(1V) with respect to the real components and the

imaginary components of the weight vector, respectively, are as follows

VWRH(W') = é[R:J HIR + Rsz’l/VR + "R:Tz‘”, - z'Rzm,-”’fll + C’\R

3[R+ RIW + Cx, (A22)
VW,H(‘V) = % ['.R:z ”/R - "RIZWR + Rzz u/'l + R:Z ”;I] + C'>\I
= :' (R W-RIW]+ O\, . (A.23)

Since R,, is Ilermitian, RT = R,,. For a constant tt, the constrained LMS

algorithm for the (k+ 1) adaptation complex weight vector is

Wik+1) = W(k) - py HOV(E))
= W(k) - p[l, W) + CNE) (A.21)
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Solving for the Lagrange multipliers vector X(k) by equating

f = CTW(k+ 1), and substituting into Eq. (A.24), we get

W(k+1) = P|W(k)-uR, W) + F (A.25)

where

P =1-cclTeyter
F = cicteyly

Equation (A.25) is a deterministic gradient descent algorithm requiring a
priort information of the statistics of the signals and noises. For a stochastic
gradient descent technique, a prior: information is neither available nor
necessary. Substituting R,, for X(#)X(k)T results in the complex constrained
LMS algorithm

W) = F
W(k+1) = P[W(k)-py(k)X(k)] + F . (A.26)

.............

Y
s R
e
Db Scnlndin, O A S N

P

........




LT

1.1]

1.2]

[1.3]

(.4

(13]

[1.6]

1.7]

[1.8]

1.9]

[1.10]

[1.11]

S B S 8 -Re P S T g M

W AdCRaiC el
Al el A Tk bk d L At e W e A S Ao v ATt S A Tl S S 3

- 133 -

REFERENCES

P. W. Howells, “Intermediate Frequency Side-lobe Canceller,” U.S.
Patent 3,202,990, Aug. 24, 1965 (filed May 4, 1959).

P. W. Howells, “Explorations in Fixed and Adaptive Resolution at GE
and SURC,” [EEE Trans. Antenna and Propaga., vol. AP-24, pp. 575-
584, Sept. 1976.

Applebaum. *“‘Adaptive arrays,” Syracuse Univ. Res. Corp., Rep. SPL
TR 66-1. Aug. 1966.

B. Widrow. P. E. Mantey, L. J. Griffiths, and B. B. Goode, “Adaptive
Antenna Systems,” Proc. [EEE, vol. 55, no. 12, pp. 2143-2159, Dec. 1967.

Capon et. al., "“Multi-dimensional Maximum Likelihood processing of a
large aperture seismic array,” Proc. [EEE, vol. 55, no. 2, pp. 192-211,
Feb. 1967.

R. T. Lacoss, “‘Adaptive combining of wideband array data for optimal
reception,” [EEE Trans. Geosci. Electron., vol. GE-6, no. 2, pp. 78-306,
May 1968.

S. W. W. Shor, “Adaptive technique to discriminate against coherent

noise in a narrow-band system,” J. Acoust. Soc. Amer., vol. 39, January
19606.

L. J. Griffiths, “A Simple Adaptive Algorithm for Real-time Processing in
Antenna Arrays,”’ Proc. [EEE, vol. 57 no. 10, pp. 1696-1704, Oct. 1969.

O. L. Frost, III, ““Adaptive Least Squares Optimization Subject to Linear
Equality Constraints,” Ph.D. Dissertation, Stanford University, Stanford,
CA, Augz. 1970.

O. L. Frost, III, *An algorithm for linearly constrained adaptive array
processing,” Proc. IEEE, vol. 60, no. 8, pp. 926-935, Aug. 1972.

C. W. Jim, “A Comparison of Two LMS Constrained Optimal Array
Structures,”’ Proc. [EEE, vol. 65. pp. 1730-1731, Dee. 1977,

YT T TN T e AT

:
‘i
:

1
-

'k

.o - e
- el PRI |




y.:_‘.“.w % O R St W e dadutinll Sad Sl Wil Al AR

[1.12]

[1.13]

[1.14]

[1.13)

(1.10]

(1.17]

[1.18)

[1.19]

[1.20]

[2.1]

- 134 -

L. J. Griffiths and C. W. Jim, “An Alternative Approach to Linearly
Constrained Adaptive Beamforming,” [EEE Trans. Ant. and Prop., vol.
AP-30, no. 1, pp. 27-34, Jan. 1982.

C. L. Zahm, ‘“Application of Adaptive Arrays to Suppress Strong
Jammers in the Presence of Weak Signals,” IEEE Trans. Aerosp.
Electron. Syst., vol. AES-9, no. 2, pp. 260-271, March 1973.

W. F. Gabriel, “*Adaptive arrays-An introduction,” Proc. IEEE, vol. 6.1,
pp. 239-272 Feb. 1976.

Special issue on adaptive antennas, JEEL Trans. Antennas Propagat., vol.
AP-24, no. 5, Sept. 1976.

W. F. Gabriel, “Spectral analysis and adaptive array supperresolution
technique,” Proc. [EEE vol. 68, no. 6, pp. 654-666, June 1920.

R. A. Chestek, “The Addition of Soft Constraints to the LMS
Algorithm,” Ph.D. Dissertation, Stanford University, Stanford, CA, May
1979.

B. Widrow et.al., “Signal Cancellation Phenomena in Adaptive
Antennas: Causes and Cures,” [EEE Trans. Antennas Propaga., vol. AP-
30, no. 3, May 1982.

K. Duvall, “Research on Adaptive Antenna Techniques V," Final Report,
Naval Air Systems Command under Contract N00019-82-C0189, Sept.
1983.

T. J. Shan and T. Kailath, ‘“Adaptive beamforming for coherent signals
and interference,” Proc. of II I[EEE Workshop on Spectral Estimation,
Tampa, FL, Nov, 1983.

S. P. Applebaum, and D. J. Chapman, “Adaptive Arrays with Main
Beam Constraints,” [EEE Trans. Antennas Propaga., vol. AP-24, no. 5,
pp. 650-662, Sept. 1976.

K. Duvall, “Signal Cancellation in Adaptive Arrays: The Phenomena and
a Remedy,” Ph.D Thesis, Dept. of Elec. Eng., Stanford University, Sept.
1983.

Ll .

2 ek ad




N Y e~ ARt X N R )
A AP 4 GME i Jou ve s g SRS e S Sl st paEL ML SRS MM RN

T B

MR g -~ AND En s S a8 SRRy ~~% (RN LSRG

SR oSl

[2.3]

(3.1]

[3.2]

(3.3]

[3.4]

(3.5

[3.6]

3.7]

(3.5

- 135 -

B. Widrow, et.al., ‘“Adaptive Noise Cancelling: Principles and
Applications,” Proec. IEEE vol. 63, no. 12, December 1975.

J. R. Glover, “Adaptive Noise Cancelling of Sinusoidal Interference,”
Ph.D Thesis, Dept. of Elec. Eng., Stanford University, December 1975.

Y. L. Su, “A Complex Algorithm for Linearly Constrained Adaptive
Arrays,” IEEFE Trans. Antennas Propaga., vol. AP-31, no. 4, July 1983.

T. J. Shan and T. Kailath, “Adaptive beamforming for coherent signals

and interference,” to be published in [EEE Trans. Acoust.. Speech,
Signal Processing,

B. Widrow, I. McCool. and M. Ball, “The Complex LMS Algorithm.”
Proc. ILEE vol. 63, pp. 719-720, April 1975.

R. C. Dixon, “Spread Spectrum Techniques,” The IEEE Press.

R. A. Scholtz, “The Origins Of Spread-Spectrum Communications,”
[EEE Trans. Commun., vol. COM-30, no. 5, pp. 822-854, May 1982.

R. L. Pickholtz, D.L. Schilling, and L. B. Milstein, “Theory of Spread-
Spectrum Communications -- A Tutorial,” [EEE Trans. Commun., vol.
COM-30, no. 5, pp. 855-884, May 1982.

R. T. Compton, Jr.,, “An Adaptive Array in a Spread-Spectrum

Communication System," Proc. IEEE vol. 66, no. 3, pp. 289-298, March
1978.

J. H. Winters, “Spread Spectrum in a Four-Phase Communication
System Employing Adaptive Antennas,” IEEE Trans. Commun., vol.
COM-30, no. 5, pp. 929-936, May 1982.

C. E. Cook and H. S. Marsh, “An Introduction to Spread Spectrum,”
IEEE Communication Magazine, Vol. 21, no. 2, pp. 8-16, March 1983.

M. Spellman, “A Comparison Between Frequency Hopping and Direct
Spread PN As Antijam Techniques,” IEEE Communication Magazine.
Vol. 21, no. 2, pp. 37-51. March 1983.

M. Dentino, J McCool, and B. Widrow, *“Adaptive Filtering in the
Frequency Domain,” Proc. [EEE vol. 66, no. 12, pp. 1058-1659,
December 1978.

~~~~~~~~~~

e

- V.‘

)




- T YT T Y W X W -
—r o Bk Sl A Sad 2 L g e g A e e sl ol Sadl sl B et Sl T St Sl A Siadl Sinlt Sadh Y 5 v
STt Tl T AT B A i el v A R Sull el A Rall Sglh Sndh v A P - < e A Al

...........

- 136 -

g (3.9] N. J. Bershad and P. L. Feintuch, “Analysis of the Frequency Domain
[ Adaptive Filter,”” Proc. IEEE vol. 67, no. 12, pp. 1658-1659, December

1979. Ll
(3.10] R. R. Bitmeaad and B. D. O. Anderson, “Adaptive Frequency Sampling "

Filters,” IEEE Trans. Acoust. Speech Signal Processing, vol. ASSP-29,
no. 3, pp. 684-694, June 1981. - ‘J

o [3.11] S. S. Narayan, A. M. Peterson, and M. J. Narasimha, *“Transformation O
@ Domain LMS Algorithm,” IEEE Trans. Acoust. Speech Signal Processing, y
' vol. ASSP-31, no. 3, pp. 609-615, June 1983.

el

L} [3.12] L. L. Horowitz and K. D. Senne, “i :rformance Advantage of Complex
LMS for Controlling Narrow-Band Adaptive Arrays,” [EEE Trans.
! Circuit and Systems, vol. CAS-28, no. 6, pp. 562-576, June 1981.

o [3.13] L. Ljung, and T. Soderstrom, “Theory and Practice of Recursive 'Y
1 Identification.” 1983, The MIT Press. '
}

TP

[3.14] S. Shaffer, *Adaptive Inverse-Model Control,”” Ph.D Thesis, Dept. of Elec.
Eng., Stanford University, August 1982.

[3.15] B. Widrow, J. McCool, and B. Medoff, ‘“Adaptive Control by Inverse

-‘v'rv'r"V!i'- P
-

=
Modelling,” Conf. Rec. of 12th Asilomar Conference on Circuits, )
Systems, and Computers, pp. 90-94, Nov. 1978. }
S
F‘ [3.16) B. Widrow, D. Shur, and S. Shaffer, “On Adaptive Inverse Control,” . ;
Conf. Rec. of 15th Asilomar Conference on Circuits, Systems, and -
Computers, pp. 185-189, Nov. 1981. o
= (4.1 J. Makhoul, “Linear Prediction: A Tutorial Review,” Proc. IEEE, vol. .
g 63, no. 4, pp. 561-580, April 1975. b
3
A [4.2] J. R. Glover, Jr., “Adaptive Noise Cancelling Applied to Sinusoidal
Interferences,” IEEE Trans. on Acoustics, Speech, and Signal Proc., vol.
ASSP-25, pp. 484-491, Dec. 1977. )
« ’
_ (43] S. M. Kay and S. L. Marple, Jr., “Spectrum Analysis--A Modern
% Perspective,” Proc. [EEE, vol. 69, no. 11, Nov. 1981. .
- ]
. i} . ),
(3>.1]  Widrow et.al., “Research on Adaptive Antenna Techniques IV, Final o
Report, Naval Air System Command under Contract N00G19-80-C-0133, ]
& Sept. 1980.
bn. !

- aa




e . MRS - - v - S b AL I A ST R AR NINAC I RS A R a*h S gD RO i A o '-j-?
| N )
.' -
- 137 - i
; [A.1]  B. S. Byun and A. F. Gangi, “A Constraint-Elimination Technique for ". )
1 Linearly Constrained Array Processing,” IEEE Trans. Geosci. Electron., R
’ vol. GE-1P, pp. 8-15, Jan. 1981. B
[A-2]  W. W. Shen, “A Constrained Minimum Power Adaptive Beamformer : J
with Time-varying Adaption Rate,” Geophysics, vol. 44, pp. 1088-1090, ® )
P June 1979. ]
E-. [A.3] L. E. Brennan and I. S. Reed, “Theory of Adaptive Radar,”” IEEE Trans. ah
5 Aerosp. Electron. Syst., vol. AES-9, pp. 237-252, March 1973. S
[ ]
i], [A4] R. T. Compton, “An Experimental Four-Element Adaptive Array,” o
> IEEE Trans. Antennas Propaga.. vol. AP-24, no. 5, pp. 697-7006, Sept. .
{ 1976. Lo
t L
é [A.3]  B. Widrow, “Adaptive Filters,” in Aspects of Network and System ®
i Theory, R. E. Kalman and N. DeClaris, Eds. New York: Holt. Rinehart, K
5 and Winston, pp. 563-587, 1970. o
[A.6] B. Widrow and J. McCool, “A Comparison of Adaptive Algorithms Based R
" on the Methods of Steepest Descent and Random Search,” [EEE Trans. . .
& Antennas Propaga., vol. AP-24, no. 5, pp. 615-637, Sept. 1976. o
;
Q .
r o
- vt
]
°
t — =
’ b
4
¢ 'y
,
: .
. L
. . _
i L = _ : . RN _‘_;A._ﬁ; . )';ALA_._'__'.' N -‘ U .,'w:.:.;' R a RO L DTG SIS L T T W are




WV LT

.

END
FILMED

R S

M S SRS

-

=T

<

2-85

PR

SN




